| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrn0 | Structured version Visualization version GIF version | ||
| Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| Ref | Expression |
|---|---|
| isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| upgrn0 | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4060 | . . 3 ⊢ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 𝑉 ∖ {∅}) | |
| 2 | isupgr.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | isupgr.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 2, 3 | upgrfn 29071 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) → 𝐸:𝐴⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 5 | 4 | ffvelcdmda 7079 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴) ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 6 | 5 | 3impa 1109 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 7 | 1, 6 | sselid 3961 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ (𝒫 𝑉 ∖ {∅})) |
| 8 | eldifsni 4771 | . 2 ⊢ ((𝐸‘𝐹) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸‘𝐹) ≠ ∅) | |
| 9 | 7, 8 | syl 17 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {crab 3420 ∖ cdif 3928 ∅c0 4313 𝒫 cpw 4580 {csn 4606 class class class wbr 5124 Fn wfn 6531 ‘cfv 6536 ≤ cle 11275 2c2 12300 ♯chash 14353 Vtxcvtx 28980 iEdgciedg 28981 UPGraphcupgr 29064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-upgr 29066 |
| This theorem is referenced by: upgrex 29076 |
| Copyright terms: Public domain | W3C validator |