MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrf Structured version   Visualization version   GIF version

Theorem upgrf 28781
Description: The edge function of an undirected pseudograph is a function into unordered pairs of vertices. Version of upgrfn 28782 without explicitly specified domain of the edge function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrf (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem upgrf
StepHypRef Expression
1 isupgr.v . . 3 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2isupgr 28779 . 2 (𝐺 ∈ UPGraph → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
43ibi 267 1 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {crab 3431  cdif 3945  c0 4322  𝒫 cpw 4602  {csn 4628   class class class wbr 5148  dom cdm 5676  wf 6539  cfv 6543  cle 11256  2c2 12274  chash 14297  Vtxcvtx 28691  iEdgciedg 28692  UPGraphcupgr 28775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-upgr 28777
This theorem is referenced by:  upgrfn  28782  upgrss  28783  upgrop  28789  upgruhgr  28797  upgrun  28813  umgrislfupgr  28818  upgredgss  28827  edgupgr  28829  upgredg  28832  upgrreslem  28996  upgrres1  29005
  Copyright terms: Public domain W3C validator