![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrf | Structured version Visualization version GIF version |
Description: The edge function of an undirected pseudograph is a function into unordered pairs of vertices. Version of upgrfn 28782 without explicitly specified domain of the edge function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
Ref | Expression |
---|---|
isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrf | ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isupgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isupgr.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | isupgr 28779 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
4 | 3 | ibi 267 | 1 ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3431 ∖ cdif 3945 ∅c0 4322 𝒫 cpw 4602 {csn 4628 class class class wbr 5148 dom cdm 5676 ⟶wf 6539 ‘cfv 6543 ≤ cle 11256 2c2 12274 ♯chash 14297 Vtxcvtx 28691 iEdgciedg 28692 UPGraphcupgr 28775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-upgr 28777 |
This theorem is referenced by: upgrfn 28782 upgrss 28783 upgrop 28789 upgruhgr 28797 upgrun 28813 umgrislfupgr 28818 upgredgss 28827 edgupgr 28829 upgredg 28832 upgrreslem 28996 upgrres1 29005 |
Copyright terms: Public domain | W3C validator |