MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrf Structured version   Visualization version   GIF version

Theorem upgrf 29049
Description: The edge function of an undirected pseudograph is a function into unordered pairs of vertices. Version of upgrfn 29050 without explicitly specified domain of the edge function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrf (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem upgrf
StepHypRef Expression
1 isupgr.v . . 3 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . 3 𝐸 = (iEdg‘𝐺)
31, 2isupgr 29047 . 2 (𝐺 ∈ UPGraph → (𝐺 ∈ UPGraph ↔ 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
43ibi 267 1 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  cdif 3902  c0 4286  𝒫 cpw 4553  {csn 4579   class class class wbr 5095  dom cdm 5623  wf 6482  cfv 6486  cle 11169  2c2 12201  chash 14255  Vtxcvtx 28959  iEdgciedg 28960  UPGraphcupgr 29043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-upgr 29045
This theorem is referenced by:  upgrfn  29050  upgrss  29051  upgrop  29057  upgruhgr  29065  upgrun  29081  umgrislfupgr  29086  upgredgss  29095  edgupgr  29097  upgredg  29100  upgrreslem  29267  upgrres1  29276
  Copyright terms: Public domain W3C validator