MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrss Structured version   Visualization version   GIF version

Theorem upgrss 29070
Description: An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 29-Nov-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrss ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)

Proof of Theorem upgrss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4029 . . . 4 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 𝑉 ∖ {∅})
2 difss 4085 . . . 4 (𝒫 𝑉 ∖ {∅}) ⊆ 𝒫 𝑉
31, 2sstri 3940 . . 3 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ 𝒫 𝑉
4 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
5 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
64, 5upgrf 29068 . . . 4 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
76ffvelcdmda 7025 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
83, 7sselid 3928 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ∈ 𝒫 𝑉)
98elpwid 4560 1 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  cdif 3895  wss 3898  c0 4282  𝒫 cpw 4551  {csn 4577   class class class wbr 5095  dom cdm 5621  cfv 6488  cle 11156  2c2 12189  chash 14241  Vtxcvtx 28978  iEdgciedg 28979  UPGraphcupgr 29062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-upgr 29064
This theorem is referenced by:  upgrex  29074  isuspgrim0  48021
  Copyright terms: Public domain W3C validator