| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrss | Structured version Visualization version GIF version | ||
| Description: An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 29-Nov-2020.) |
| Ref | Expression |
|---|---|
| isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| upgrss | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4046 | . . . 4 ⊢ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 𝑉 ∖ {∅}) | |
| 2 | difss 4102 | . . . 4 ⊢ (𝒫 𝑉 ∖ {∅}) ⊆ 𝒫 𝑉 | |
| 3 | 1, 2 | sstri 3959 | . . 3 ⊢ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ 𝒫 𝑉 |
| 4 | isupgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | isupgr.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 6 | 4, 5 | upgrf 29020 | . . . 4 ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 7 | 6 | ffvelcdmda 7059 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 8 | 3, 7 | sselid 3947 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ∈ 𝒫 𝑉) |
| 9 | 8 | elpwid 4575 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 ≤ cle 11216 2c2 12248 ♯chash 14302 Vtxcvtx 28930 iEdgciedg 28931 UPGraphcupgr 29014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-upgr 29016 |
| This theorem is referenced by: upgrex 29026 isuspgrim0 47898 |
| Copyright terms: Public domain | W3C validator |