![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrss | Structured version Visualization version GIF version |
Description: An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 29-Nov-2020.) |
Ref | Expression |
---|---|
isupgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isupgr.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrss | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4089 | . . . 4 ⊢ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 𝑉 ∖ {∅}) | |
2 | difss 4145 | . . . 4 ⊢ (𝒫 𝑉 ∖ {∅}) ⊆ 𝒫 𝑉 | |
3 | 1, 2 | sstri 4004 | . . 3 ⊢ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ 𝒫 𝑉 |
4 | isupgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | isupgr.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
6 | 4, 5 | upgrf 29117 | . . . 4 ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
7 | 6 | ffvelcdmda 7103 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
8 | 3, 7 | sselid 3992 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ∈ 𝒫 𝑉) |
9 | 8 | elpwid 4613 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {crab 3432 ∖ cdif 3959 ⊆ wss 3962 ∅c0 4338 𝒫 cpw 4604 {csn 4630 class class class wbr 5147 dom cdm 5688 ‘cfv 6562 ≤ cle 11293 2c2 12318 ♯chash 14365 Vtxcvtx 29027 iEdgciedg 29028 UPGraphcupgr 29111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-upgr 29113 |
This theorem is referenced by: upgrex 29123 isuspgrim0 47809 |
Copyright terms: Public domain | W3C validator |