Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0fodjrnlem Structured version   Visualization version   GIF version

Theorem sge0fodjrnlem 45863
Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0fodjrnlem.k 𝑘𝜑
sge0fodjrnlem.n 𝑛𝜑
sge0fodjrnlem.bd (𝑘 = 𝐺𝐵 = 𝐷)
sge0fodjrnlem.c (𝜑𝐶𝑉)
sge0fodjrnlem.f (𝜑𝐹:𝐶onto𝐴)
sge0fodjrnlem.dj (𝜑Disj 𝑛𝐶 (𝐹𝑛))
sge0fodjrnlem.fng ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
sge0fodjrnlem.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0fodjrnlem.b0 ((𝜑𝑘 = ∅) → 𝐵 = 0)
sge0fodjrnlem.z 𝑍 = (𝐹 “ {∅})
Assertion
Ref Expression
sge0fodjrnlem (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘,𝑛   𝐷,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺   𝑘,𝑍,𝑛
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐵(𝑘)   𝐷(𝑛)   𝐺(𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem sge0fodjrnlem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 sge0fodjrnlem.k . . . 4 𝑘𝜑
2 sge0fodjrnlem.c . . . . 5 (𝜑𝐶𝑉)
3 sge0fodjrnlem.f . . . . 5 (𝜑𝐹:𝐶onto𝐴)
4 focdmex 7953 . . . . 5 (𝐶𝑉 → (𝐹:𝐶onto𝐴𝐴 ∈ V))
52, 3, 4sylc 65 . . . 4 (𝜑𝐴 ∈ V)
6 difssd 4126 . . . 4 (𝜑 → (𝐴 ∖ {∅}) ⊆ 𝐴)
7 simpl 481 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝜑)
86sselda 3973 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝑘𝐴)
9 sge0fodjrnlem.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
107, 8, 9syl2anc 582 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝐵 ∈ (0[,]+∞))
11 simpl 481 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝜑)
12 dfin4 4263 . . . . . . . . . 10 (𝐴 ∩ {∅}) = (𝐴 ∖ (𝐴 ∖ {∅}))
1312eqcomi 2734 . . . . . . . . 9 (𝐴 ∖ (𝐴 ∖ {∅})) = (𝐴 ∩ {∅})
14 inss2 4225 . . . . . . . . 9 (𝐴 ∩ {∅}) ⊆ {∅}
1513, 14eqsstri 4008 . . . . . . . 8 (𝐴 ∖ (𝐴 ∖ {∅})) ⊆ {∅}
16 id 22 . . . . . . . 8 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})))
1715, 16sselid 3971 . . . . . . 7 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 ∈ {∅})
18 elsni 4642 . . . . . . 7 (𝑘 ∈ {∅} → 𝑘 = ∅)
1917, 18syl 17 . . . . . 6 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 = ∅)
2019adantl 480 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝑘 = ∅)
21 sge0fodjrnlem.b0 . . . . 5 ((𝜑𝑘 = ∅) → 𝐵 = 0)
2211, 20, 21syl2anc 582 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝐵 = 0)
231, 5, 6, 10, 22sge0ss 45859 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)) = (Σ^‘(𝑘𝐴𝐵)))
2423eqcomd 2731 . 2 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)))
25 sge0fodjrnlem.n . . 3 𝑛𝜑
26 sge0fodjrnlem.bd . . 3 (𝑘 = 𝐺𝐵 = 𝐷)
272difexd 5327 . . 3 (𝜑 → (𝐶𝑍) ∈ V)
28 eqid 2725 . . . . 5 (𝑛𝐶 ↦ (𝐹𝑛)) = (𝑛𝐶 ↦ (𝐹𝑛))
29 fof 6804 . . . . . . 7 (𝐹:𝐶onto𝐴𝐹:𝐶𝐴)
303, 29syl 17 . . . . . 6 (𝜑𝐹:𝐶𝐴)
3130ffvelcdmda 7087 . . . . 5 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
32 sge0fodjrnlem.dj . . . . 5 (𝜑Disj 𝑛𝐶 (𝐹𝑛))
33 fveq2 6890 . . . . . . 7 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3433neeq1d 2990 . . . . . 6 (𝑚 = 𝑛 → ((𝐹𝑚) ≠ ∅ ↔ (𝐹𝑛) ≠ ∅))
3534cbvrabv 3430 . . . . 5 {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} = {𝑛𝐶 ∣ (𝐹𝑛) ≠ ∅}
3633cbvmptv 5257 . . . . . . 7 (𝑚𝐶 ↦ (𝐹𝑚)) = (𝑛𝐶 ↦ (𝐹𝑛))
3736rneqi 5934 . . . . . 6 ran (𝑚𝐶 ↦ (𝐹𝑚)) = ran (𝑛𝐶 ↦ (𝐹𝑛))
3837difeq1i 4111 . . . . 5 (ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}) = (ran (𝑛𝐶 ↦ (𝐹𝑛)) ∖ {∅})
3925, 28, 31, 32, 35, 38disjf1o 44624 . . . 4 (𝜑 → ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}):{𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}–1-1-onto→(ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}))
4030feqmptd 6960 . . . . . 6 (𝜑𝐹 = (𝑛𝐶 ↦ (𝐹𝑛)))
41 difssd 4126 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑍) ⊆ 𝐶)
4241sselda 3973 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝑛𝐶)
43 eldifi 4120 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (𝐶𝑍) → 𝑛𝐶)
4443adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → 𝑛𝐶)
45 id 22 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑛) = ∅ → (𝐹𝑛) = ∅)
46 fvex 6903 . . . . . . . . . . . . . . . . . . . . 21 (𝐹𝑛) ∈ V
4746elsn 4640 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑛) ∈ {∅} ↔ (𝐹𝑛) = ∅)
4845, 47sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑛) = ∅ → (𝐹𝑛) ∈ {∅})
4948adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → (𝐹𝑛) ∈ {∅})
5044, 49jca 510 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
5150adantll 712 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
5230ffnd 6718 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝐶)
53 elpreima 7060 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝐶 → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5452, 53syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5554ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5651, 55mpbird 256 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ (𝐹 “ {∅}))
57 sge0fodjrnlem.z . . . . . . . . . . . . . . 15 𝑍 = (𝐹 “ {∅})
5856, 57eleqtrrdi 2836 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → 𝑛𝑍)
59 eldifn 4121 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝐶𝑍) → ¬ 𝑛𝑍)
6059ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → ¬ 𝑛𝑍)
6158, 60pm2.65da 815 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝐶𝑍)) → ¬ (𝐹𝑛) = ∅)
6261neqned 2937 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝐹𝑛) ≠ ∅)
6342, 62jca 510 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝑛𝐶 ∧ (𝐹𝑛) ≠ ∅))
6434elrab 3676 . . . . . . . . . . 11 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ↔ (𝑛𝐶 ∧ (𝐹𝑛) ≠ ∅))
6563, 64sylibr 233 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅})
6665ex 411 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (𝐶𝑍) → 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
6764simplbi 496 . . . . . . . . . . . . . . 15 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛𝐶)
6867adantl 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → 𝑛𝐶)
6957eleq2i 2817 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍𝑛 ∈ (𝐹 “ {∅}))
7069biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑍𝑛 ∈ (𝐹 “ {∅}))
7170adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑛 ∈ (𝐹 “ {∅}))
7254adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
7371, 72mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
7473simprd 494 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ {∅})
75 elsni 4642 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ {∅} → (𝐹𝑛) = ∅)
7674, 75syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) = ∅)
7776adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → (𝐹𝑛) = ∅)
7864simprbi 495 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → (𝐹𝑛) ≠ ∅)
7978ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → (𝐹𝑛) ≠ ∅)
8079neneqd 2935 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → ¬ (𝐹𝑛) = ∅)
8177, 80pm2.65da 815 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → ¬ 𝑛𝑍)
8268, 81eldifd 3952 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → 𝑛 ∈ (𝐶𝑍))
8382ex 411 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛 ∈ (𝐶𝑍)))
8425, 83ralrimi 3245 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}𝑛 ∈ (𝐶𝑍))
85 dfss3 3962 . . . . . . . . . . 11 ({𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ⊆ (𝐶𝑍) ↔ ∀𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}𝑛 ∈ (𝐶𝑍))
8684, 85sylibr 233 . . . . . . . . . 10 (𝜑 → {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ⊆ (𝐶𝑍))
8786sseld 3972 . . . . . . . . 9 (𝜑 → (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛 ∈ (𝐶𝑍)))
8866, 87impbid 211 . . . . . . . 8 (𝜑 → (𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
8925, 88alrimi 2201 . . . . . . 7 (𝜑 → ∀𝑛(𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
90 dfcleq 2718 . . . . . . 7 ((𝐶𝑍) = {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ↔ ∀𝑛(𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
9189, 90sylibr 233 . . . . . 6 (𝜑 → (𝐶𝑍) = {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅})
9240, 91reseq12d 5981 . . . . 5 (𝜑 → (𝐹 ↾ (𝐶𝑍)) = ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
9340, 36eqtr4di 2783 . . . . . . . . 9 (𝜑𝐹 = (𝑚𝐶 ↦ (𝐹𝑚)))
9493eqcomd 2731 . . . . . . . 8 (𝜑 → (𝑚𝐶 ↦ (𝐹𝑚)) = 𝐹)
9594rneqd 5935 . . . . . . 7 (𝜑 → ran (𝑚𝐶 ↦ (𝐹𝑚)) = ran 𝐹)
96 forn 6807 . . . . . . . 8 (𝐹:𝐶onto𝐴 → ran 𝐹 = 𝐴)
973, 96syl 17 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐴)
9895, 97eqtr2d 2766 . . . . . 6 (𝜑𝐴 = ran (𝑚𝐶 ↦ (𝐹𝑚)))
9998difeq1d 4114 . . . . 5 (𝜑 → (𝐴 ∖ {∅}) = (ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}))
10092, 91, 99f1oeq123d 6826 . . . 4 (𝜑 → ((𝐹 ↾ (𝐶𝑍)):(𝐶𝑍)–1-1-onto→(𝐴 ∖ {∅}) ↔ ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}):{𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}–1-1-onto→(ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅})))
10139, 100mpbird 256 . . 3 (𝜑 → (𝐹 ↾ (𝐶𝑍)):(𝐶𝑍)–1-1-onto→(𝐴 ∖ {∅}))
102 fvres 6909 . . . . 5 (𝑛 ∈ (𝐶𝑍) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = (𝐹𝑛))
103102adantl 480 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = (𝐹𝑛))
104 simpl 481 . . . . 5 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝜑)
105 sge0fodjrnlem.fng . . . . 5 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
106104, 42, 105syl2anc 582 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝐹𝑛) = 𝐺)
107103, 106eqtrd 2765 . . 3 ((𝜑𝑛 ∈ (𝐶𝑍)) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = 𝐺)
1081, 25, 26, 27, 101, 107, 10sge0f1o 45829 . 2 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)) = (Σ^‘(𝑛 ∈ (𝐶𝑍) ↦ 𝐷)))
109105eqcomd 2731 . . . . . 6 ((𝜑𝑛𝐶) → 𝐺 = (𝐹𝑛))
110109, 31eqeltrd 2825 . . . . 5 ((𝜑𝑛𝐶) → 𝐺𝐴)
111104, 42, 110syl2anc 582 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝐺𝐴)
112111ex 411 . . . . 5 (𝜑 → (𝑛 ∈ (𝐶𝑍) → 𝐺𝐴))
113112imdistani 567 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝜑𝐺𝐴))
114 nfcv 2892 . . . . 5 𝑘𝐺
115 nfv 1909 . . . . . . 7 𝑘 𝐺𝐴
1161, 115nfan 1894 . . . . . 6 𝑘(𝜑𝐺𝐴)
117 nfv 1909 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
118116, 117nfim 1891 . . . . 5 𝑘((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞))
119 eleq1 2813 . . . . . . 7 (𝑘 = 𝐺 → (𝑘𝐴𝐺𝐴))
120119anbi2d 628 . . . . . 6 (𝑘 = 𝐺 → ((𝜑𝑘𝐴) ↔ (𝜑𝐺𝐴)))
12126eleq1d 2810 . . . . . 6 (𝑘 = 𝐺 → (𝐵 ∈ (0[,]+∞) ↔ 𝐷 ∈ (0[,]+∞)))
122120, 121imbi12d 343 . . . . 5 (𝑘 = 𝐺 → (((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞))))
123114, 118, 122, 9vtoclgf 3549 . . . 4 (𝐺𝐴 → ((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞)))
124111, 113, 123sylc 65 . . 3 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝐷 ∈ (0[,]+∞))
125 simpl 481 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝜑)
126 eldifi 4120 . . . . . 6 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝐶)
127126adantl 480 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝑛𝐶)
128125, 127, 110syl2anc 582 . . . 4 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐺𝐴)
129 dfin4 4263 . . . . . . . . 9 (𝑍𝐶) = (𝑍 ∖ (𝑍𝐶))
130 difss 4125 . . . . . . . . 9 (𝑍 ∖ (𝑍𝐶)) ⊆ 𝑍
131129, 130eqsstri 4008 . . . . . . . 8 (𝑍𝐶) ⊆ 𝑍
132 inss2 4225 . . . . . . . . . 10 (𝐶𝑍) ⊆ 𝑍
133 id 22 . . . . . . . . . . 11 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝐶 ∖ (𝐶𝑍)))
134 dfin4 4263 . . . . . . . . . . . 12 (𝐶𝑍) = (𝐶 ∖ (𝐶𝑍))
135134eqcomi 2734 . . . . . . . . . . 11 (𝐶 ∖ (𝐶𝑍)) = (𝐶𝑍)
136133, 135eleqtrdi 2835 . . . . . . . . . 10 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝐶𝑍))
137132, 136sselid 3971 . . . . . . . . 9 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝑍)
138137, 126elind 4189 . . . . . . . 8 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝑍𝐶))
139131, 138sselid 3971 . . . . . . 7 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝑍)
140139adantl 480 . . . . . 6 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝑛𝑍)
14176eqcomd 2731 . . . . . . 7 ((𝜑𝑛𝑍) → ∅ = (𝐹𝑛))
142 simpl 481 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝜑)
14373simpld 493 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑛𝐶)
144142, 143, 105syl2anc 582 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) = 𝐺)
145141, 144eqtr2d 2766 . . . . . 6 ((𝜑𝑛𝑍) → 𝐺 = ∅)
146125, 140, 145syl2anc 582 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐺 = ∅)
147125, 146jca 510 . . . 4 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → (𝜑𝐺 = ∅))
148 nfv 1909 . . . . . . 7 𝑘 𝐺 = ∅
1491, 148nfan 1894 . . . . . 6 𝑘(𝜑𝐺 = ∅)
150 nfv 1909 . . . . . 6 𝑘 𝐷 = 0
151149, 150nfim 1891 . . . . 5 𝑘((𝜑𝐺 = ∅) → 𝐷 = 0)
152 eqeq1 2729 . . . . . . 7 (𝑘 = 𝐺 → (𝑘 = ∅ ↔ 𝐺 = ∅))
153152anbi2d 628 . . . . . 6 (𝑘 = 𝐺 → ((𝜑𝑘 = ∅) ↔ (𝜑𝐺 = ∅)))
15426eqeq1d 2727 . . . . . 6 (𝑘 = 𝐺 → (𝐵 = 0 ↔ 𝐷 = 0))
155153, 154imbi12d 343 . . . . 5 (𝑘 = 𝐺 → (((𝜑𝑘 = ∅) → 𝐵 = 0) ↔ ((𝜑𝐺 = ∅) → 𝐷 = 0)))
156114, 151, 155, 21vtoclgf 3549 . . . 4 (𝐺𝐴 → ((𝜑𝐺 = ∅) → 𝐷 = 0))
157128, 147, 156sylc 65 . . 3 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐷 = 0)
15825, 2, 41, 124, 157sge0ss 45859 . 2 (𝜑 → (Σ^‘(𝑛 ∈ (𝐶𝑍) ↦ 𝐷)) = (Σ^‘(𝑛𝐶𝐷)))
15924, 108, 1583eqtrd 2769 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wnf 1777  wcel 2098  wne 2930  wral 3051  {crab 3419  Vcvv 3463  cdif 3938  cin 3940  wss 3941  c0 4319  {csn 4625  Disj wdisj 5109  cmpt 5227  ccnv 5672  ran crn 5674  cres 5675  cima 5676   Fn wfn 6538  wf 6539  ontowfo 6541  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7413  0cc0 11133  +∞cpnf 11270  [,]cicc 13354  Σ^csumge0 45809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-disj 5110  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-xadd 13120  df-ico 13357  df-icc 13358  df-fz 13512  df-fzo 13655  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459  df-sum 15660  df-sumge0 45810
This theorem is referenced by:  sge0fodjrn  45864
  Copyright terms: Public domain W3C validator