Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0fodjrnlem Structured version   Visualization version   GIF version

Theorem sge0fodjrnlem 44743
Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0fodjrnlem.k 𝑘𝜑
sge0fodjrnlem.n 𝑛𝜑
sge0fodjrnlem.bd (𝑘 = 𝐺𝐵 = 𝐷)
sge0fodjrnlem.c (𝜑𝐶𝑉)
sge0fodjrnlem.f (𝜑𝐹:𝐶onto𝐴)
sge0fodjrnlem.dj (𝜑Disj 𝑛𝐶 (𝐹𝑛))
sge0fodjrnlem.fng ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
sge0fodjrnlem.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0fodjrnlem.b0 ((𝜑𝑘 = ∅) → 𝐵 = 0)
sge0fodjrnlem.z 𝑍 = (𝐹 “ {∅})
Assertion
Ref Expression
sge0fodjrnlem (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘,𝑛   𝐷,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺   𝑘,𝑍,𝑛
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐵(𝑘)   𝐷(𝑛)   𝐺(𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem sge0fodjrnlem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 sge0fodjrnlem.k . . . 4 𝑘𝜑
2 sge0fodjrnlem.c . . . . 5 (𝜑𝐶𝑉)
3 sge0fodjrnlem.f . . . . 5 (𝜑𝐹:𝐶onto𝐴)
4 focdmex 7889 . . . . 5 (𝐶𝑉 → (𝐹:𝐶onto𝐴𝐴 ∈ V))
52, 3, 4sylc 65 . . . 4 (𝜑𝐴 ∈ V)
6 difssd 4093 . . . 4 (𝜑 → (𝐴 ∖ {∅}) ⊆ 𝐴)
7 simpl 484 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝜑)
86sselda 3945 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝑘𝐴)
9 sge0fodjrnlem.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
107, 8, 9syl2anc 585 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝐵 ∈ (0[,]+∞))
11 simpl 484 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝜑)
12 dfin4 4228 . . . . . . . . . 10 (𝐴 ∩ {∅}) = (𝐴 ∖ (𝐴 ∖ {∅}))
1312eqcomi 2742 . . . . . . . . 9 (𝐴 ∖ (𝐴 ∖ {∅})) = (𝐴 ∩ {∅})
14 inss2 4190 . . . . . . . . 9 (𝐴 ∩ {∅}) ⊆ {∅}
1513, 14eqsstri 3979 . . . . . . . 8 (𝐴 ∖ (𝐴 ∖ {∅})) ⊆ {∅}
16 id 22 . . . . . . . 8 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})))
1715, 16sselid 3943 . . . . . . 7 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 ∈ {∅})
18 elsni 4604 . . . . . . 7 (𝑘 ∈ {∅} → 𝑘 = ∅)
1917, 18syl 17 . . . . . 6 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 = ∅)
2019adantl 483 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝑘 = ∅)
21 sge0fodjrnlem.b0 . . . . 5 ((𝜑𝑘 = ∅) → 𝐵 = 0)
2211, 20, 21syl2anc 585 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝐵 = 0)
231, 5, 6, 10, 22sge0ss 44739 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)) = (Σ^‘(𝑘𝐴𝐵)))
2423eqcomd 2739 . 2 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)))
25 sge0fodjrnlem.n . . 3 𝑛𝜑
26 sge0fodjrnlem.bd . . 3 (𝑘 = 𝐺𝐵 = 𝐷)
272difexd 5287 . . 3 (𝜑 → (𝐶𝑍) ∈ V)
28 eqid 2733 . . . . 5 (𝑛𝐶 ↦ (𝐹𝑛)) = (𝑛𝐶 ↦ (𝐹𝑛))
29 fof 6757 . . . . . . 7 (𝐹:𝐶onto𝐴𝐹:𝐶𝐴)
303, 29syl 17 . . . . . 6 (𝜑𝐹:𝐶𝐴)
3130ffvelcdmda 7036 . . . . 5 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
32 sge0fodjrnlem.dj . . . . 5 (𝜑Disj 𝑛𝐶 (𝐹𝑛))
33 fveq2 6843 . . . . . . 7 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3433neeq1d 3000 . . . . . 6 (𝑚 = 𝑛 → ((𝐹𝑚) ≠ ∅ ↔ (𝐹𝑛) ≠ ∅))
3534cbvrabv 3416 . . . . 5 {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} = {𝑛𝐶 ∣ (𝐹𝑛) ≠ ∅}
3633cbvmptv 5219 . . . . . . 7 (𝑚𝐶 ↦ (𝐹𝑚)) = (𝑛𝐶 ↦ (𝐹𝑛))
3736rneqi 5893 . . . . . 6 ran (𝑚𝐶 ↦ (𝐹𝑚)) = ran (𝑛𝐶 ↦ (𝐹𝑛))
3837difeq1i 4079 . . . . 5 (ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}) = (ran (𝑛𝐶 ↦ (𝐹𝑛)) ∖ {∅})
3925, 28, 31, 32, 35, 38disjf1o 43498 . . . 4 (𝜑 → ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}):{𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}–1-1-onto→(ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}))
4030feqmptd 6911 . . . . . 6 (𝜑𝐹 = (𝑛𝐶 ↦ (𝐹𝑛)))
41 difssd 4093 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑍) ⊆ 𝐶)
4241sselda 3945 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝑛𝐶)
43 eldifi 4087 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (𝐶𝑍) → 𝑛𝐶)
4443adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → 𝑛𝐶)
45 id 22 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑛) = ∅ → (𝐹𝑛) = ∅)
46 fvex 6856 . . . . . . . . . . . . . . . . . . . . 21 (𝐹𝑛) ∈ V
4746elsn 4602 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑛) ∈ {∅} ↔ (𝐹𝑛) = ∅)
4845, 47sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑛) = ∅ → (𝐹𝑛) ∈ {∅})
4948adantl 483 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → (𝐹𝑛) ∈ {∅})
5044, 49jca 513 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
5150adantll 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
5230ffnd 6670 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝐶)
53 elpreima 7009 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝐶 → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5452, 53syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5554ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5651, 55mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ (𝐹 “ {∅}))
57 sge0fodjrnlem.z . . . . . . . . . . . . . . 15 𝑍 = (𝐹 “ {∅})
5856, 57eleqtrrdi 2845 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → 𝑛𝑍)
59 eldifn 4088 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝐶𝑍) → ¬ 𝑛𝑍)
6059ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → ¬ 𝑛𝑍)
6158, 60pm2.65da 816 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝐶𝑍)) → ¬ (𝐹𝑛) = ∅)
6261neqned 2947 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝐹𝑛) ≠ ∅)
6342, 62jca 513 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝑛𝐶 ∧ (𝐹𝑛) ≠ ∅))
6434elrab 3646 . . . . . . . . . . 11 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ↔ (𝑛𝐶 ∧ (𝐹𝑛) ≠ ∅))
6563, 64sylibr 233 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅})
6665ex 414 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (𝐶𝑍) → 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
6764simplbi 499 . . . . . . . . . . . . . . 15 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛𝐶)
6867adantl 483 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → 𝑛𝐶)
6957eleq2i 2826 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍𝑛 ∈ (𝐹 “ {∅}))
7069biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑍𝑛 ∈ (𝐹 “ {∅}))
7170adantl 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑛 ∈ (𝐹 “ {∅}))
7254adantr 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
7371, 72mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
7473simprd 497 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ {∅})
75 elsni 4604 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ {∅} → (𝐹𝑛) = ∅)
7674, 75syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) = ∅)
7776adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → (𝐹𝑛) = ∅)
7864simprbi 498 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → (𝐹𝑛) ≠ ∅)
7978ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → (𝐹𝑛) ≠ ∅)
8079neneqd 2945 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → ¬ (𝐹𝑛) = ∅)
8177, 80pm2.65da 816 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → ¬ 𝑛𝑍)
8268, 81eldifd 3922 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → 𝑛 ∈ (𝐶𝑍))
8382ex 414 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛 ∈ (𝐶𝑍)))
8425, 83ralrimi 3239 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}𝑛 ∈ (𝐶𝑍))
85 dfss3 3933 . . . . . . . . . . 11 ({𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ⊆ (𝐶𝑍) ↔ ∀𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}𝑛 ∈ (𝐶𝑍))
8684, 85sylibr 233 . . . . . . . . . 10 (𝜑 → {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ⊆ (𝐶𝑍))
8786sseld 3944 . . . . . . . . 9 (𝜑 → (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛 ∈ (𝐶𝑍)))
8866, 87impbid 211 . . . . . . . 8 (𝜑 → (𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
8925, 88alrimi 2207 . . . . . . 7 (𝜑 → ∀𝑛(𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
90 dfcleq 2726 . . . . . . 7 ((𝐶𝑍) = {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ↔ ∀𝑛(𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
9189, 90sylibr 233 . . . . . 6 (𝜑 → (𝐶𝑍) = {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅})
9240, 91reseq12d 5939 . . . . 5 (𝜑 → (𝐹 ↾ (𝐶𝑍)) = ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
9340, 36eqtr4di 2791 . . . . . . . . 9 (𝜑𝐹 = (𝑚𝐶 ↦ (𝐹𝑚)))
9493eqcomd 2739 . . . . . . . 8 (𝜑 → (𝑚𝐶 ↦ (𝐹𝑚)) = 𝐹)
9594rneqd 5894 . . . . . . 7 (𝜑 → ran (𝑚𝐶 ↦ (𝐹𝑚)) = ran 𝐹)
96 forn 6760 . . . . . . . 8 (𝐹:𝐶onto𝐴 → ran 𝐹 = 𝐴)
973, 96syl 17 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐴)
9895, 97eqtr2d 2774 . . . . . 6 (𝜑𝐴 = ran (𝑚𝐶 ↦ (𝐹𝑚)))
9998difeq1d 4082 . . . . 5 (𝜑 → (𝐴 ∖ {∅}) = (ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}))
10092, 91, 99f1oeq123d 6779 . . . 4 (𝜑 → ((𝐹 ↾ (𝐶𝑍)):(𝐶𝑍)–1-1-onto→(𝐴 ∖ {∅}) ↔ ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}):{𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}–1-1-onto→(ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅})))
10139, 100mpbird 257 . . 3 (𝜑 → (𝐹 ↾ (𝐶𝑍)):(𝐶𝑍)–1-1-onto→(𝐴 ∖ {∅}))
102 fvres 6862 . . . . 5 (𝑛 ∈ (𝐶𝑍) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = (𝐹𝑛))
103102adantl 483 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = (𝐹𝑛))
104 simpl 484 . . . . 5 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝜑)
105 sge0fodjrnlem.fng . . . . 5 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
106104, 42, 105syl2anc 585 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝐹𝑛) = 𝐺)
107103, 106eqtrd 2773 . . 3 ((𝜑𝑛 ∈ (𝐶𝑍)) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = 𝐺)
1081, 25, 26, 27, 101, 107, 10sge0f1o 44709 . 2 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)) = (Σ^‘(𝑛 ∈ (𝐶𝑍) ↦ 𝐷)))
109105eqcomd 2739 . . . . . 6 ((𝜑𝑛𝐶) → 𝐺 = (𝐹𝑛))
110109, 31eqeltrd 2834 . . . . 5 ((𝜑𝑛𝐶) → 𝐺𝐴)
111104, 42, 110syl2anc 585 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝐺𝐴)
112111ex 414 . . . . 5 (𝜑 → (𝑛 ∈ (𝐶𝑍) → 𝐺𝐴))
113112imdistani 570 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝜑𝐺𝐴))
114 nfcv 2904 . . . . 5 𝑘𝐺
115 nfv 1918 . . . . . . 7 𝑘 𝐺𝐴
1161, 115nfan 1903 . . . . . 6 𝑘(𝜑𝐺𝐴)
117 nfv 1918 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
118116, 117nfim 1900 . . . . 5 𝑘((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞))
119 eleq1 2822 . . . . . . 7 (𝑘 = 𝐺 → (𝑘𝐴𝐺𝐴))
120119anbi2d 630 . . . . . 6 (𝑘 = 𝐺 → ((𝜑𝑘𝐴) ↔ (𝜑𝐺𝐴)))
12126eleq1d 2819 . . . . . 6 (𝑘 = 𝐺 → (𝐵 ∈ (0[,]+∞) ↔ 𝐷 ∈ (0[,]+∞)))
122120, 121imbi12d 345 . . . . 5 (𝑘 = 𝐺 → (((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞))))
123114, 118, 122, 9vtoclgf 3522 . . . 4 (𝐺𝐴 → ((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞)))
124111, 113, 123sylc 65 . . 3 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝐷 ∈ (0[,]+∞))
125 simpl 484 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝜑)
126 eldifi 4087 . . . . . 6 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝐶)
127126adantl 483 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝑛𝐶)
128125, 127, 110syl2anc 585 . . . 4 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐺𝐴)
129 dfin4 4228 . . . . . . . . 9 (𝑍𝐶) = (𝑍 ∖ (𝑍𝐶))
130 difss 4092 . . . . . . . . 9 (𝑍 ∖ (𝑍𝐶)) ⊆ 𝑍
131129, 130eqsstri 3979 . . . . . . . 8 (𝑍𝐶) ⊆ 𝑍
132 inss2 4190 . . . . . . . . . 10 (𝐶𝑍) ⊆ 𝑍
133 id 22 . . . . . . . . . . 11 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝐶 ∖ (𝐶𝑍)))
134 dfin4 4228 . . . . . . . . . . . 12 (𝐶𝑍) = (𝐶 ∖ (𝐶𝑍))
135134eqcomi 2742 . . . . . . . . . . 11 (𝐶 ∖ (𝐶𝑍)) = (𝐶𝑍)
136133, 135eleqtrdi 2844 . . . . . . . . . 10 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝐶𝑍))
137132, 136sselid 3943 . . . . . . . . 9 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝑍)
138137, 126elind 4155 . . . . . . . 8 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝑍𝐶))
139131, 138sselid 3943 . . . . . . 7 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝑍)
140139adantl 483 . . . . . 6 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝑛𝑍)
14176eqcomd 2739 . . . . . . 7 ((𝜑𝑛𝑍) → ∅ = (𝐹𝑛))
142 simpl 484 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝜑)
14373simpld 496 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑛𝐶)
144142, 143, 105syl2anc 585 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) = 𝐺)
145141, 144eqtr2d 2774 . . . . . 6 ((𝜑𝑛𝑍) → 𝐺 = ∅)
146125, 140, 145syl2anc 585 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐺 = ∅)
147125, 146jca 513 . . . 4 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → (𝜑𝐺 = ∅))
148 nfv 1918 . . . . . . 7 𝑘 𝐺 = ∅
1491, 148nfan 1903 . . . . . 6 𝑘(𝜑𝐺 = ∅)
150 nfv 1918 . . . . . 6 𝑘 𝐷 = 0
151149, 150nfim 1900 . . . . 5 𝑘((𝜑𝐺 = ∅) → 𝐷 = 0)
152 eqeq1 2737 . . . . . . 7 (𝑘 = 𝐺 → (𝑘 = ∅ ↔ 𝐺 = ∅))
153152anbi2d 630 . . . . . 6 (𝑘 = 𝐺 → ((𝜑𝑘 = ∅) ↔ (𝜑𝐺 = ∅)))
15426eqeq1d 2735 . . . . . 6 (𝑘 = 𝐺 → (𝐵 = 0 ↔ 𝐷 = 0))
155153, 154imbi12d 345 . . . . 5 (𝑘 = 𝐺 → (((𝜑𝑘 = ∅) → 𝐵 = 0) ↔ ((𝜑𝐺 = ∅) → 𝐷 = 0)))
156114, 151, 155, 21vtoclgf 3522 . . . 4 (𝐺𝐴 → ((𝜑𝐺 = ∅) → 𝐷 = 0))
157128, 147, 156sylc 65 . . 3 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐷 = 0)
15825, 2, 41, 124, 157sge0ss 44739 . 2 (𝜑 → (Σ^‘(𝑛 ∈ (𝐶𝑍) ↦ 𝐷)) = (Σ^‘(𝑛𝐶𝐷)))
15924, 108, 1583eqtrd 2777 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wnf 1786  wcel 2107  wne 2940  wral 3061  {crab 3406  Vcvv 3444  cdif 3908  cin 3910  wss 3911  c0 4283  {csn 4587  Disj wdisj 5071  cmpt 5189  ccnv 5633  ran crn 5635  cres 5636  cima 5637   Fn wfn 6492  wf 6493  ontowfo 6495  1-1-ontowf1o 6496  cfv 6497  (class class class)co 7358  0cc0 11056  +∞cpnf 11191  [,]cicc 13273  Σ^csumge0 44689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-disj 5072  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-z 12505  df-uz 12769  df-rp 12921  df-xadd 13039  df-ico 13276  df-icc 13277  df-fz 13431  df-fzo 13574  df-seq 13913  df-exp 13974  df-hash 14237  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376  df-sum 15577  df-sumge0 44690
This theorem is referenced by:  sge0fodjrn  44744
  Copyright terms: Public domain W3C validator