Step | Hyp | Ref
| Expression |
1 | | sge0fodjrnlem.k |
. . . 4
⊢
Ⅎ𝑘𝜑 |
2 | | sge0fodjrnlem.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
3 | | sge0fodjrnlem.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐶–onto→𝐴) |
4 | | fornex 7772 |
. . . . 5
⊢ (𝐶 ∈ 𝑉 → (𝐹:𝐶–onto→𝐴 → 𝐴 ∈ V)) |
5 | 2, 3, 4 | sylc 65 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ V) |
6 | | difssd 4063 |
. . . 4
⊢ (𝜑 → (𝐴 ∖ {∅}) ⊆ 𝐴) |
7 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {∅})) → 𝜑) |
8 | 6 | sselda 3917 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {∅})) → 𝑘 ∈ 𝐴) |
9 | | sge0fodjrnlem.b |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
10 | 7, 8, 9 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {∅})) → 𝐵 ∈
(0[,]+∞)) |
11 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝜑) |
12 | | dfin4 4198 |
. . . . . . . . . 10
⊢ (𝐴 ∩ {∅}) = (𝐴 ∖ (𝐴 ∖ {∅})) |
13 | 12 | eqcomi 2747 |
. . . . . . . . 9
⊢ (𝐴 ∖ (𝐴 ∖ {∅})) = (𝐴 ∩ {∅}) |
14 | | inss2 4160 |
. . . . . . . . 9
⊢ (𝐴 ∩ {∅}) ⊆
{∅} |
15 | 13, 14 | eqsstri 3951 |
. . . . . . . 8
⊢ (𝐴 ∖ (𝐴 ∖ {∅})) ⊆
{∅} |
16 | | id 22 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) |
17 | 15, 16 | sselid 3915 |
. . . . . . 7
⊢ (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 ∈
{∅}) |
18 | | elsni 4575 |
. . . . . . 7
⊢ (𝑘 ∈ {∅} → 𝑘 = ∅) |
19 | 17, 18 | syl 17 |
. . . . . 6
⊢ (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 = ∅) |
20 | 19 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝑘 = ∅) |
21 | | sge0fodjrnlem.b0 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝐵 = 0) |
22 | 11, 20, 21 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝐵 = 0) |
23 | 1, 5, 6, 10, 22 | sge0ss 43840 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)) =
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵))) |
24 | 23 | eqcomd 2744 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) =
(Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵))) |
25 | | sge0fodjrnlem.n |
. . 3
⊢
Ⅎ𝑛𝜑 |
26 | | sge0fodjrnlem.bd |
. . 3
⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) |
27 | 2 | difexd 5248 |
. . 3
⊢ (𝜑 → (𝐶 ∖ 𝑍) ∈ V) |
28 | | eqid 2738 |
. . . . 5
⊢ (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛)) |
29 | | fof 6672 |
. . . . . . 7
⊢ (𝐹:𝐶–onto→𝐴 → 𝐹:𝐶⟶𝐴) |
30 | 3, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐶⟶𝐴) |
31 | 30 | ffvelrnda 6943 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) ∈ 𝐴) |
32 | | sge0fodjrnlem.dj |
. . . . 5
⊢ (𝜑 → Disj 𝑛 ∈ 𝐶 (𝐹‘𝑛)) |
33 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) |
34 | 33 | neeq1d 3002 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((𝐹‘𝑚) ≠ ∅ ↔ (𝐹‘𝑛) ≠ ∅)) |
35 | 34 | cbvrabv 3416 |
. . . . 5
⊢ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅} = {𝑛 ∈ 𝐶 ∣ (𝐹‘𝑛) ≠ ∅} |
36 | 33 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑚 ∈ 𝐶 ↦ (𝐹‘𝑚)) = (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛)) |
37 | 36 | rneqi 5835 |
. . . . . 6
⊢ ran
(𝑚 ∈ 𝐶 ↦ (𝐹‘𝑚)) = ran (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛)) |
38 | 37 | difeq1i 4049 |
. . . . 5
⊢ (ran
(𝑚 ∈ 𝐶 ↦ (𝐹‘𝑚)) ∖ {∅}) = (ran (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛)) ∖ {∅}) |
39 | 25, 28, 31, 32, 35, 38 | disjf1o 42618 |
. . . 4
⊢ (𝜑 → ((𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛)) ↾ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}):{𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}–1-1-onto→(ran
(𝑚 ∈ 𝐶 ↦ (𝐹‘𝑚)) ∖ {∅})) |
40 | 30 | feqmptd 6819 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛))) |
41 | | difssd 4063 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶 ∖ 𝑍) ⊆ 𝐶) |
42 | 41 | sselda 3917 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → 𝑛 ∈ 𝐶) |
43 | | eldifi 4057 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (𝐶 ∖ 𝑍) → 𝑛 ∈ 𝐶) |
44 | 43 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ (𝐶 ∖ 𝑍) ∧ (𝐹‘𝑛) = ∅) → 𝑛 ∈ 𝐶) |
45 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘𝑛) = ∅ → (𝐹‘𝑛) = ∅) |
46 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹‘𝑛) ∈ V |
47 | 46 | elsn 4573 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘𝑛) ∈ {∅} ↔ (𝐹‘𝑛) = ∅) |
48 | 45, 47 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑛) = ∅ → (𝐹‘𝑛) ∈ {∅}) |
49 | 48 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ (𝐶 ∖ 𝑍) ∧ (𝐹‘𝑛) = ∅) → (𝐹‘𝑛) ∈ {∅}) |
50 | 44, 49 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (𝐶 ∖ 𝑍) ∧ (𝐹‘𝑛) = ∅) → (𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) ∈ {∅})) |
51 | 50 | adantll 710 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) ∧ (𝐹‘𝑛) = ∅) → (𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) ∈ {∅})) |
52 | 30 | ffnd 6585 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 Fn 𝐶) |
53 | | elpreima 6917 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 Fn 𝐶 → (𝑛 ∈ (◡𝐹 “ {∅}) ↔ (𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) ∈ {∅}))) |
54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑛 ∈ (◡𝐹 “ {∅}) ↔ (𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) ∈ {∅}))) |
55 | 54 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) ∧ (𝐹‘𝑛) = ∅) → (𝑛 ∈ (◡𝐹 “ {∅}) ↔ (𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) ∈ {∅}))) |
56 | 51, 55 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) ∧ (𝐹‘𝑛) = ∅) → 𝑛 ∈ (◡𝐹 “ {∅})) |
57 | | sge0fodjrnlem.z |
. . . . . . . . . . . . . . 15
⊢ 𝑍 = (◡𝐹 “ {∅}) |
58 | 56, 57 | eleqtrrdi 2850 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) ∧ (𝐹‘𝑛) = ∅) → 𝑛 ∈ 𝑍) |
59 | | eldifn 4058 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (𝐶 ∖ 𝑍) → ¬ 𝑛 ∈ 𝑍) |
60 | 59 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) ∧ (𝐹‘𝑛) = ∅) → ¬ 𝑛 ∈ 𝑍) |
61 | 58, 60 | pm2.65da 813 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → ¬ (𝐹‘𝑛) = ∅) |
62 | 61 | neqned 2949 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → (𝐹‘𝑛) ≠ ∅) |
63 | 42, 62 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → (𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) ≠ ∅)) |
64 | 34 | elrab 3617 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅} ↔ (𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) ≠ ∅)) |
65 | 63, 64 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → 𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}) |
66 | 65 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ (𝐶 ∖ 𝑍) → 𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅})) |
67 | 64 | simplbi 497 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅} → 𝑛 ∈ 𝐶) |
68 | 67 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}) → 𝑛 ∈ 𝐶) |
69 | 57 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (◡𝐹 “ {∅})) |
70 | 69 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (◡𝐹 “ {∅})) |
71 | 70 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (◡𝐹 “ {∅})) |
72 | 54 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑛 ∈ (◡𝐹 “ {∅}) ↔ (𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) ∈ {∅}))) |
73 | 71, 72 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑛 ∈ 𝐶 ∧ (𝐹‘𝑛) ∈ {∅})) |
74 | 73 | simprd 495 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ {∅}) |
75 | | elsni 4575 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑛) ∈ {∅} → (𝐹‘𝑛) = ∅) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) = ∅) |
77 | 76 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) = ∅) |
78 | 64 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅} → (𝐹‘𝑛) ≠ ∅) |
79 | 78 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ≠ ∅) |
80 | 79 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}) ∧ 𝑛 ∈ 𝑍) → ¬ (𝐹‘𝑛) = ∅) |
81 | 77, 80 | pm2.65da 813 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}) → ¬ 𝑛 ∈ 𝑍) |
82 | 68, 81 | eldifd 3894 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}) → 𝑛 ∈ (𝐶 ∖ 𝑍)) |
83 | 82 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅} → 𝑛 ∈ (𝐶 ∖ 𝑍))) |
84 | 25, 83 | ralrimi 3139 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}𝑛 ∈ (𝐶 ∖ 𝑍)) |
85 | | dfss3 3905 |
. . . . . . . . . . 11
⊢ ({𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅} ⊆ (𝐶 ∖ 𝑍) ↔ ∀𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}𝑛 ∈ (𝐶 ∖ 𝑍)) |
86 | 84, 85 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅} ⊆ (𝐶 ∖ 𝑍)) |
87 | 86 | sseld 3916 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅} → 𝑛 ∈ (𝐶 ∖ 𝑍))) |
88 | 66, 87 | impbid 211 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 ∈ (𝐶 ∖ 𝑍) ↔ 𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅})) |
89 | 25, 88 | alrimi 2209 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛(𝑛 ∈ (𝐶 ∖ 𝑍) ↔ 𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅})) |
90 | | dfcleq 2731 |
. . . . . . 7
⊢ ((𝐶 ∖ 𝑍) = {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅} ↔ ∀𝑛(𝑛 ∈ (𝐶 ∖ 𝑍) ↔ 𝑛 ∈ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅})) |
91 | 89, 90 | sylibr 233 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∖ 𝑍) = {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}) |
92 | 40, 91 | reseq12d 5881 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (𝐶 ∖ 𝑍)) = ((𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛)) ↾ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅})) |
93 | 40, 36 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (𝑚 ∈ 𝐶 ↦ (𝐹‘𝑚))) |
94 | 93 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝜑 → (𝑚 ∈ 𝐶 ↦ (𝐹‘𝑚)) = 𝐹) |
95 | 94 | rneqd 5836 |
. . . . . . 7
⊢ (𝜑 → ran (𝑚 ∈ 𝐶 ↦ (𝐹‘𝑚)) = ran 𝐹) |
96 | | forn 6675 |
. . . . . . . 8
⊢ (𝐹:𝐶–onto→𝐴 → ran 𝐹 = 𝐴) |
97 | 3, 96 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 = 𝐴) |
98 | 95, 97 | eqtr2d 2779 |
. . . . . 6
⊢ (𝜑 → 𝐴 = ran (𝑚 ∈ 𝐶 ↦ (𝐹‘𝑚))) |
99 | 98 | difeq1d 4052 |
. . . . 5
⊢ (𝜑 → (𝐴 ∖ {∅}) = (ran (𝑚 ∈ 𝐶 ↦ (𝐹‘𝑚)) ∖ {∅})) |
100 | 92, 91, 99 | f1oeq123d 6694 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ (𝐶 ∖ 𝑍)):(𝐶 ∖ 𝑍)–1-1-onto→(𝐴 ∖ {∅}) ↔ ((𝑛 ∈ 𝐶 ↦ (𝐹‘𝑛)) ↾ {𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}):{𝑚 ∈ 𝐶 ∣ (𝐹‘𝑚) ≠ ∅}–1-1-onto→(ran
(𝑚 ∈ 𝐶 ↦ (𝐹‘𝑚)) ∖ {∅}))) |
101 | 39, 100 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝐹 ↾ (𝐶 ∖ 𝑍)):(𝐶 ∖ 𝑍)–1-1-onto→(𝐴 ∖ {∅})) |
102 | | fvres 6775 |
. . . . 5
⊢ (𝑛 ∈ (𝐶 ∖ 𝑍) → ((𝐹 ↾ (𝐶 ∖ 𝑍))‘𝑛) = (𝐹‘𝑛)) |
103 | 102 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → ((𝐹 ↾ (𝐶 ∖ 𝑍))‘𝑛) = (𝐹‘𝑛)) |
104 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → 𝜑) |
105 | | sge0fodjrnlem.fng |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) |
106 | 104, 42, 105 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → (𝐹‘𝑛) = 𝐺) |
107 | 103, 106 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → ((𝐹 ↾ (𝐶 ∖ 𝑍))‘𝑛) = 𝐺) |
108 | 1, 25, 26, 27, 101, 107, 10 | sge0f1o 43810 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)) =
(Σ^‘(𝑛 ∈ (𝐶 ∖ 𝑍) ↦ 𝐷))) |
109 | 105 | eqcomd 2744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐺 = (𝐹‘𝑛)) |
110 | 109, 31 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → 𝐺 ∈ 𝐴) |
111 | 104, 42, 110 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → 𝐺 ∈ 𝐴) |
112 | 111 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ (𝐶 ∖ 𝑍) → 𝐺 ∈ 𝐴)) |
113 | 112 | imdistani 568 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → (𝜑 ∧ 𝐺 ∈ 𝐴)) |
114 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑘𝐺 |
115 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑘 𝐺 ∈ 𝐴 |
116 | 1, 115 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑘(𝜑 ∧ 𝐺 ∈ 𝐴) |
117 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘 𝐷 ∈
(0[,]+∞) |
118 | 116, 117 | nfim 1900 |
. . . . 5
⊢
Ⅎ𝑘((𝜑 ∧ 𝐺 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) |
119 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑘 = 𝐺 → (𝑘 ∈ 𝐴 ↔ 𝐺 ∈ 𝐴)) |
120 | 119 | anbi2d 628 |
. . . . . 6
⊢ (𝑘 = 𝐺 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝐺 ∈ 𝐴))) |
121 | 26 | eleq1d 2823 |
. . . . . 6
⊢ (𝑘 = 𝐺 → (𝐵 ∈ (0[,]+∞) ↔ 𝐷 ∈
(0[,]+∞))) |
122 | 120, 121 | imbi12d 344 |
. . . . 5
⊢ (𝑘 = 𝐺 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ 𝐺 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)))) |
123 | 114, 118,
122, 9 | vtoclgf 3493 |
. . . 4
⊢ (𝐺 ∈ 𝐴 → ((𝜑 ∧ 𝐺 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞))) |
124 | 111, 113,
123 | sylc 65 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ 𝑍)) → 𝐷 ∈ (0[,]+∞)) |
125 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍))) → 𝜑) |
126 | | eldifi 4057 |
. . . . . 6
⊢ (𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍)) → 𝑛 ∈ 𝐶) |
127 | 126 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍))) → 𝑛 ∈ 𝐶) |
128 | 125, 127,
110 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍))) → 𝐺 ∈ 𝐴) |
129 | | dfin4 4198 |
. . . . . . . . 9
⊢ (𝑍 ∩ 𝐶) = (𝑍 ∖ (𝑍 ∖ 𝐶)) |
130 | | difss 4062 |
. . . . . . . . 9
⊢ (𝑍 ∖ (𝑍 ∖ 𝐶)) ⊆ 𝑍 |
131 | 129, 130 | eqsstri 3951 |
. . . . . . . 8
⊢ (𝑍 ∩ 𝐶) ⊆ 𝑍 |
132 | | inss2 4160 |
. . . . . . . . . 10
⊢ (𝐶 ∩ 𝑍) ⊆ 𝑍 |
133 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍)) → 𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍))) |
134 | | dfin4 4198 |
. . . . . . . . . . . 12
⊢ (𝐶 ∩ 𝑍) = (𝐶 ∖ (𝐶 ∖ 𝑍)) |
135 | 134 | eqcomi 2747 |
. . . . . . . . . . 11
⊢ (𝐶 ∖ (𝐶 ∖ 𝑍)) = (𝐶 ∩ 𝑍) |
136 | 133, 135 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍)) → 𝑛 ∈ (𝐶 ∩ 𝑍)) |
137 | 132, 136 | sselid 3915 |
. . . . . . . . 9
⊢ (𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍)) → 𝑛 ∈ 𝑍) |
138 | 137, 126 | elind 4124 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍)) → 𝑛 ∈ (𝑍 ∩ 𝐶)) |
139 | 131, 138 | sselid 3915 |
. . . . . . 7
⊢ (𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍)) → 𝑛 ∈ 𝑍) |
140 | 139 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍))) → 𝑛 ∈ 𝑍) |
141 | 76 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∅ = (𝐹‘𝑛)) |
142 | | simpl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝜑) |
143 | 73 | simpld 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝐶) |
144 | 142, 143,
105 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) = 𝐺) |
145 | 141, 144 | eqtr2d 2779 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐺 = ∅) |
146 | 125, 140,
145 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍))) → 𝐺 = ∅) |
147 | 125, 146 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍))) → (𝜑 ∧ 𝐺 = ∅)) |
148 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑘 𝐺 = ∅ |
149 | 1, 148 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑘(𝜑 ∧ 𝐺 = ∅) |
150 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘 𝐷 = 0 |
151 | 149, 150 | nfim 1900 |
. . . . 5
⊢
Ⅎ𝑘((𝜑 ∧ 𝐺 = ∅) → 𝐷 = 0) |
152 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑘 = 𝐺 → (𝑘 = ∅ ↔ 𝐺 = ∅)) |
153 | 152 | anbi2d 628 |
. . . . . 6
⊢ (𝑘 = 𝐺 → ((𝜑 ∧ 𝑘 = ∅) ↔ (𝜑 ∧ 𝐺 = ∅))) |
154 | 26 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑘 = 𝐺 → (𝐵 = 0 ↔ 𝐷 = 0)) |
155 | 153, 154 | imbi12d 344 |
. . . . 5
⊢ (𝑘 = 𝐺 → (((𝜑 ∧ 𝑘 = ∅) → 𝐵 = 0) ↔ ((𝜑 ∧ 𝐺 = ∅) → 𝐷 = 0))) |
156 | 114, 151,
155, 21 | vtoclgf 3493 |
. . . 4
⊢ (𝐺 ∈ 𝐴 → ((𝜑 ∧ 𝐺 = ∅) → 𝐷 = 0)) |
157 | 128, 147,
156 | sylc 65 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐶 ∖ (𝐶 ∖ 𝑍))) → 𝐷 = 0) |
158 | 25, 2, 41, 124, 157 | sge0ss 43840 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ (𝐶 ∖ 𝑍) ↦ 𝐷)) =
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |
159 | 24, 108, 158 | 3eqtrd 2782 |
1
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) =
(Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |