MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpiundi Structured version   Visualization version   GIF version

Theorem xpiundi 5668
Description: Distributive law for Cartesian product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
xpiundi (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem xpiundi
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom 3270 . . . 4 (∃𝑤𝐶𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
2 eliun 4935 . . . . . . . 8 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
32anbi1i 625 . . . . . . 7 ((𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ (∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
43exbii 1848 . . . . . 6 (∃𝑦(𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
5 df-rex 3072 . . . . . 6 (∃𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩))
6 df-rex 3072 . . . . . . . 8 (∃𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
76rexbii 3094 . . . . . . 7 (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
8 rexcom4 3268 . . . . . . 7 (∃𝑥𝐴𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
9 r19.41v 3182 . . . . . . . 8 (∃𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ (∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
109exbii 1848 . . . . . . 7 (∃𝑦𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
117, 8, 103bitri 297 . . . . . 6 (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
124, 5, 113bitr4i 303 . . . . 5 (∃𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
1312rexbii 3094 . . . 4 (∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑤𝐶𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
14 elxp2 5624 . . . . 5 (𝑧 ∈ (𝐶 × 𝐵) ↔ ∃𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
1514rexbii 3094 . . . 4 (∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵) ↔ ∃𝑥𝐴𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
161, 13, 153bitr4i 303 . . 3 (∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵))
17 elxp2 5624 . . 3 (𝑧 ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ ∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩)
18 eliun 4935 . . 3 (𝑧 𝑥𝐴 (𝐶 × 𝐵) ↔ ∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵))
1916, 17, 183bitr4i 303 . 2 (𝑧 ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ 𝑧 𝑥𝐴 (𝐶 × 𝐵))
2019eqriv 2733 1 (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1539  wex 1779  wcel 2104  wrex 3071  cop 4571   ciun 4931   × cxp 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-11 2152  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-iun 4933  df-opab 5144  df-xp 5606
This theorem is referenced by:  xpexgALT  7856  txbasval  22806  txcmplem2  22842  xkoinjcn  22887  cvmlift2lem12  33325
  Copyright terms: Public domain W3C validator