MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpiundi Structured version   Visualization version   GIF version

Theorem xpiundi 5685
Description: Distributive law for Cartesian product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
xpiundi (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem xpiundi
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom 3261 . . . 4 (∃𝑤𝐶𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
2 eliun 4943 . . . . . . . 8 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
32anbi1i 624 . . . . . . 7 ((𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ (∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
43exbii 1849 . . . . . 6 (∃𝑦(𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
5 df-rex 3057 . . . . . 6 (∃𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩))
6 df-rex 3057 . . . . . . . 8 (∃𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
76rexbii 3079 . . . . . . 7 (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
8 rexcom4 3259 . . . . . . 7 (∃𝑥𝐴𝑦(𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
9 r19.41v 3162 . . . . . . . 8 (∃𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ (∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
109exbii 1849 . . . . . . 7 (∃𝑦𝑥𝐴 (𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩) ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
117, 8, 103bitri 297 . . . . . 6 (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑦(∃𝑥𝐴 𝑦𝐵𝑧 = ⟨𝑤, 𝑦⟩))
124, 5, 113bitr4i 303 . . . . 5 (∃𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
1312rexbii 3079 . . . 4 (∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑤𝐶𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
14 elxp2 5638 . . . . 5 (𝑧 ∈ (𝐶 × 𝐵) ↔ ∃𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
1514rexbii 3079 . . . 4 (∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵) ↔ ∃𝑥𝐴𝑤𝐶𝑦𝐵 𝑧 = ⟨𝑤, 𝑦⟩)
161, 13, 153bitr4i 303 . . 3 (∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩ ↔ ∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵))
17 elxp2 5638 . . 3 (𝑧 ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ ∃𝑤𝐶𝑦 𝑥𝐴 𝐵𝑧 = ⟨𝑤, 𝑦⟩)
18 eliun 4943 . . 3 (𝑧 𝑥𝐴 (𝐶 × 𝐵) ↔ ∃𝑥𝐴 𝑧 ∈ (𝐶 × 𝐵))
1916, 17, 183bitr4i 303 . 2 (𝑧 ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ 𝑧 𝑥𝐴 (𝐶 × 𝐵))
2019eqriv 2728 1 (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  wrex 3056  cop 4579   ciun 4939   × cxp 5612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-iun 4941  df-opab 5152  df-xp 5620
This theorem is referenced by:  xpexgALT  7913  txbasval  23521  txcmplem2  23557  xkoinjcn  23602  cvmlift2lem12  35358
  Copyright terms: Public domain W3C validator