| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simplr 768 | . . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ (TopOn‘𝑌)) | 
| 2 | 1 | cnmptid 23670 | . . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝑦) ∈ (𝑆 Cn 𝑆)) | 
| 3 |  | simpll 766 | . . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ (TopOn‘𝑋)) | 
| 4 |  | simpr 484 | . . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | 
| 5 | 1, 3, 4 | cnmptc 23671 | . . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝑥) ∈ (𝑆 Cn 𝑅)) | 
| 6 | 1, 2, 5 | cnmpt1t 23674 | . . 3
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ (𝑆 Cn (𝑆 ×t 𝑅))) | 
| 7 |  | xkoinjcn.3 | . . 3
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) | 
| 8 | 6, 7 | fmptd 7133 | . 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝐹:𝑋⟶(𝑆 Cn (𝑆 ×t 𝑅))) | 
| 9 |  | eqid 2736 | . . . . . 6
⊢ ∪ 𝑆 =
∪ 𝑆 | 
| 10 |  | eqid 2736 | . . . . . 6
⊢ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp} = {𝑤 ∈
𝒫 ∪ 𝑆 ∣ (𝑆 ↾t 𝑤) ∈ Comp} | 
| 11 |  | eqid 2736 | . . . . . 6
⊢ (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | 
| 12 | 9, 10, 11 | xkobval 23595 | . . . . 5
⊢ ran
(𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑧 ∣ ∃𝑘 ∈ 𝒫 ∪ 𝑆∃𝑣 ∈ (𝑆 ×t 𝑅)((𝑆 ↾t 𝑘) ∈ Comp ∧ 𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} | 
| 13 | 12 | eqabri 2884 | . . . 4
⊢ (𝑧 ∈ ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 ∪ 𝑆∃𝑣 ∈ (𝑆 ×t 𝑅)((𝑆 ↾t 𝑘) ∈ Comp ∧ 𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) | 
| 14 |  | simpll 766 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → (𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌))) | 
| 15 | 14, 6 | sylan 580 | . . . . . . . . . . 11
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ (𝑆 Cn (𝑆 ×t 𝑅))) | 
| 16 |  | imaeq1 6072 | . . . . . . . . . . . . 13
⊢ (𝑓 = (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) → (𝑓 “ 𝑘) = ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘)) | 
| 17 | 16 | sseq1d 4014 | . . . . . . . . . . . 12
⊢ (𝑓 = (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) → ((𝑓 “ 𝑘) ⊆ 𝑣 ↔ ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘) ⊆ 𝑣)) | 
| 18 | 17 | elrab3 3692 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ (𝑆 Cn (𝑆 ×t 𝑅)) → ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘) ⊆ 𝑣)) | 
| 19 | 15, 18 | syl 17 | . . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘) ⊆ 𝑣)) | 
| 20 |  | funmpt 6603 | . . . . . . . . . . 11
⊢ Fun
(𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) | 
| 21 |  | simplrl 776 | . . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → 𝑘 ∈ 𝒫 ∪ 𝑆) | 
| 22 | 21 | elpwid 4608 | . . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → 𝑘 ⊆ ∪ 𝑆) | 
| 23 | 14 | simprd 495 | . . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → 𝑆 ∈ (TopOn‘𝑌)) | 
| 24 |  | toponuni 22921 | . . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝑆) | 
| 25 | 23, 24 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → 𝑌 = ∪ 𝑆) | 
| 26 | 22, 25 | sseqtrrd 4020 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → 𝑘 ⊆ 𝑌) | 
| 27 | 26 | adantr 480 | . . . . . . . . . . . 12
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → 𝑘 ⊆ 𝑌) | 
| 28 |  | dmmptg 6261 | . . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
𝑌 〈𝑦, 𝑥〉 ∈ V → dom (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = 𝑌) | 
| 29 |  | opex 5468 | . . . . . . . . . . . . . 14
⊢
〈𝑦, 𝑥〉 ∈ V | 
| 30 | 29 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑌 → 〈𝑦, 𝑥〉 ∈ V) | 
| 31 | 28, 30 | mprg 3066 | . . . . . . . . . . . 12
⊢ dom
(𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = 𝑌 | 
| 32 | 27, 31 | sseqtrrdi 4024 | . . . . . . . . . . 11
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → 𝑘 ⊆ dom (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) | 
| 33 |  | funimass4 6972 | . . . . . . . . . . 11
⊢ ((Fun
(𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∧ 𝑘 ⊆ dom (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) → (((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘) ⊆ 𝑣 ↔ ∀𝑧 ∈ 𝑘 ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣)) | 
| 34 | 20, 32, 33 | sylancr 587 | . . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → (((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘) ⊆ 𝑣 ↔ ∀𝑧 ∈ 𝑘 ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣)) | 
| 35 | 27 | sselda 3982 | . . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑘) → 𝑧 ∈ 𝑌) | 
| 36 |  | opeq1 4872 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → 〈𝑦, 𝑥〉 = 〈𝑧, 𝑥〉) | 
| 37 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) | 
| 38 |  | opex 5468 | . . . . . . . . . . . . . . . 16
⊢
〈𝑧, 𝑥〉 ∈ V | 
| 39 | 36, 37, 38 | fvmpt 7015 | . . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑌 → ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) = 〈𝑧, 𝑥〉) | 
| 40 | 35, 39 | syl 17 | . . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑘) → ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) = 〈𝑧, 𝑥〉) | 
| 41 | 40 | eleq1d 2825 | . . . . . . . . . . . . 13
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑘) → (((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣 ↔ 〈𝑧, 𝑥〉 ∈ 𝑣)) | 
| 42 |  | vex 3483 | . . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V | 
| 43 |  | opeq2 4873 | . . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑥 → 〈𝑧, 𝑤〉 = 〈𝑧, 𝑥〉) | 
| 44 | 43 | eleq1d 2825 | . . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (〈𝑧, 𝑤〉 ∈ 𝑣 ↔ 〈𝑧, 𝑥〉 ∈ 𝑣)) | 
| 45 | 42, 44 | ralsn 4680 | . . . . . . . . . . . . 13
⊢
(∀𝑤 ∈
{𝑥}〈𝑧, 𝑤〉 ∈ 𝑣 ↔ 〈𝑧, 𝑥〉 ∈ 𝑣) | 
| 46 | 41, 45 | bitr4di 289 | . . . . . . . . . . . 12
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑘) → (((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣 ↔ ∀𝑤 ∈ {𝑥}〈𝑧, 𝑤〉 ∈ 𝑣)) | 
| 47 | 46 | ralbidva 3175 | . . . . . . . . . . 11
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → (∀𝑧 ∈ 𝑘 ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣 ↔ ∀𝑧 ∈ 𝑘 ∀𝑤 ∈ {𝑥}〈𝑧, 𝑤〉 ∈ 𝑣)) | 
| 48 |  | dfss3 3971 | . . . . . . . . . . . 12
⊢ ((𝑘 × {𝑥}) ⊆ 𝑣 ↔ ∀𝑡 ∈ (𝑘 × {𝑥})𝑡 ∈ 𝑣) | 
| 49 |  | eleq1 2828 | . . . . . . . . . . . . 13
⊢ (𝑡 = 〈𝑧, 𝑤〉 → (𝑡 ∈ 𝑣 ↔ 〈𝑧, 𝑤〉 ∈ 𝑣)) | 
| 50 | 49 | ralxp 5851 | . . . . . . . . . . . 12
⊢
(∀𝑡 ∈
(𝑘 × {𝑥})𝑡 ∈ 𝑣 ↔ ∀𝑧 ∈ 𝑘 ∀𝑤 ∈ {𝑥}〈𝑧, 𝑤〉 ∈ 𝑣) | 
| 51 | 48, 50 | bitri 275 | . . . . . . . . . . 11
⊢ ((𝑘 × {𝑥}) ⊆ 𝑣 ↔ ∀𝑧 ∈ 𝑘 ∀𝑤 ∈ {𝑥}〈𝑧, 𝑤〉 ∈ 𝑣) | 
| 52 | 47, 51 | bitr4di 289 | . . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → (∀𝑧 ∈ 𝑘 ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣 ↔ (𝑘 × {𝑥}) ⊆ 𝑣)) | 
| 53 | 19, 34, 52 | 3bitrd 305 | . . . . . . . . 9
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ (𝑘 × {𝑥}) ⊆ 𝑣)) | 
| 54 | 53 | rabbidva 3442 | . . . . . . . 8
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → {𝑥 ∈ 𝑋 ∣ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} = {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}) | 
| 55 |  | sneq 4635 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → {𝑥} = {𝑤}) | 
| 56 | 55 | xpeq2d 5714 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝑘 × {𝑥}) = (𝑘 × {𝑤})) | 
| 57 | 56 | sseq1d 4014 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝑘 × {𝑥}) ⊆ 𝑣 ↔ (𝑘 × {𝑤}) ⊆ 𝑣)) | 
| 58 | 57 | elrab 3691 | . . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ↔ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) | 
| 59 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ ∪ (𝑆
↾t 𝑘) =
∪ (𝑆 ↾t 𝑘) | 
| 60 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ ∪ 𝑅 =
∪ 𝑅 | 
| 61 |  | simplr 768 | . . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑆 ↾t 𝑘) ∈ Comp) | 
| 62 |  | simpll 766 | . . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) → 𝑅 ∈ (TopOn‘𝑋)) | 
| 63 | 62 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑅 ∈ (TopOn‘𝑋)) | 
| 64 |  | topontop 22920 | . . . . . . . . . . . . . 14
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top) | 
| 65 | 63, 64 | syl 17 | . . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑅 ∈ Top) | 
| 66 |  | topontop 22920 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top) | 
| 67 | 66 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑆 ∈ Top) | 
| 68 | 64 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑅 ∈ Top) | 
| 69 |  | txtop 23578 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ Top ∧ 𝑅 ∈ Top) → (𝑆 ×t 𝑅) ∈ Top) | 
| 70 | 67, 68, 69 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆 ×t 𝑅) ∈ Top) | 
| 71 | 70 | ad3antrrr 730 | . . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑆 ×t 𝑅) ∈ Top) | 
| 72 |  | vex 3483 | . . . . . . . . . . . . . . . 16
⊢ 𝑘 ∈ V | 
| 73 |  | toponmax 22933 | . . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑅) | 
| 74 | 63, 73 | syl 17 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑋 ∈ 𝑅) | 
| 75 |  | xpexg 7771 | . . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ V ∧ 𝑋 ∈ 𝑅) → (𝑘 × 𝑋) ∈ V) | 
| 76 | 72, 74, 75 | sylancr 587 | . . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑘 × 𝑋) ∈ V) | 
| 77 |  | simprr 772 | . . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) → 𝑣 ∈ (𝑆 ×t 𝑅)) | 
| 78 | 77 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑣 ∈ (𝑆 ×t 𝑅)) | 
| 79 |  | elrestr 17474 | . . . . . . . . . . . . . . 15
⊢ (((𝑆 ×t 𝑅) ∈ Top ∧ (𝑘 × 𝑋) ∈ V ∧ 𝑣 ∈ (𝑆 ×t 𝑅)) → (𝑣 ∩ (𝑘 × 𝑋)) ∈ ((𝑆 ×t 𝑅) ↾t (𝑘 × 𝑋))) | 
| 80 | 71, 76, 78, 79 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑣 ∩ (𝑘 × 𝑋)) ∈ ((𝑆 ×t 𝑅) ↾t (𝑘 × 𝑋))) | 
| 81 | 67 | ad3antrrr 730 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑆 ∈ Top) | 
| 82 | 72 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑘 ∈ V) | 
| 83 |  | txrest 23640 | . . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ Top ∧ 𝑅 ∈ Top) ∧ (𝑘 ∈ V ∧ 𝑋 ∈ 𝑅)) → ((𝑆 ×t 𝑅) ↾t (𝑘 × 𝑋)) = ((𝑆 ↾t 𝑘) ×t (𝑅 ↾t 𝑋))) | 
| 84 | 81, 65, 82, 74, 83 | syl22anc 838 | . . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → ((𝑆 ×t 𝑅) ↾t (𝑘 × 𝑋)) = ((𝑆 ↾t 𝑘) ×t (𝑅 ↾t 𝑋))) | 
| 85 |  | toponuni 22921 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑅) | 
| 86 | 63, 85 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑋 = ∪ 𝑅) | 
| 87 | 86 | oveq2d 7448 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑅 ↾t 𝑋) = (𝑅 ↾t ∪ 𝑅)) | 
| 88 | 60 | restid 17479 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ (TopOn‘𝑋) → (𝑅 ↾t ∪ 𝑅) =
𝑅) | 
| 89 | 63, 88 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑅 ↾t ∪ 𝑅) =
𝑅) | 
| 90 | 87, 89 | eqtrd 2776 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑅 ↾t 𝑋) = 𝑅) | 
| 91 | 90 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → ((𝑆 ↾t 𝑘) ×t (𝑅 ↾t 𝑋)) = ((𝑆 ↾t 𝑘) ×t 𝑅)) | 
| 92 | 84, 91 | eqtrd 2776 | . . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → ((𝑆 ×t 𝑅) ↾t (𝑘 × 𝑋)) = ((𝑆 ↾t 𝑘) ×t 𝑅)) | 
| 93 | 80, 92 | eleqtrd 2842 | . . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑣 ∩ (𝑘 × 𝑋)) ∈ ((𝑆 ↾t 𝑘) ×t 𝑅)) | 
| 94 | 23 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑆 ∈ (TopOn‘𝑌)) | 
| 95 | 26 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑘 ⊆ 𝑌) | 
| 96 |  | resttopon 23170 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ (TopOn‘𝑌) ∧ 𝑘 ⊆ 𝑌) → (𝑆 ↾t 𝑘) ∈ (TopOn‘𝑘)) | 
| 97 | 94, 95, 96 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑆 ↾t 𝑘) ∈ (TopOn‘𝑘)) | 
| 98 |  | toponuni 22921 | . . . . . . . . . . . . . . . 16
⊢ ((𝑆 ↾t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 = ∪ (𝑆 ↾t 𝑘)) | 
| 99 | 97, 98 | syl 17 | . . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑘 = ∪ (𝑆 ↾t 𝑘)) | 
| 100 | 99 | xpeq1d 5713 | . . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑘 × {𝑤}) = (∪ (𝑆 ↾t 𝑘) × {𝑤})) | 
| 101 |  | simprr 772 | . . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑘 × {𝑤}) ⊆ 𝑣) | 
| 102 |  | simprl 770 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑤 ∈ 𝑋) | 
| 103 | 102 | snssd 4808 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → {𝑤} ⊆ 𝑋) | 
| 104 |  | xpss2 5704 | . . . . . . . . . . . . . . . 16
⊢ ({𝑤} ⊆ 𝑋 → (𝑘 × {𝑤}) ⊆ (𝑘 × 𝑋)) | 
| 105 | 103, 104 | syl 17 | . . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑘 × {𝑤}) ⊆ (𝑘 × 𝑋)) | 
| 106 | 101, 105 | ssind 4240 | . . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑘 × {𝑤}) ⊆ (𝑣 ∩ (𝑘 × 𝑋))) | 
| 107 | 100, 106 | eqsstrrd 4018 | . . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (∪
(𝑆 ↾t
𝑘) × {𝑤}) ⊆ (𝑣 ∩ (𝑘 × 𝑋))) | 
| 108 | 102, 86 | eleqtrd 2842 | . . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑤 ∈ ∪ 𝑅) | 
| 109 | 59, 60, 61, 65, 93, 107, 108 | txtube 23649 | . . . . . . . . . . . 12
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → ∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ (∪ (𝑆 ↾t 𝑘) × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋)))) | 
| 110 |  | toponss 22934 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑟 ∈ 𝑅) → 𝑟 ⊆ 𝑋) | 
| 111 | 63, 110 | sylan 580 | . . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → 𝑟 ⊆ 𝑋) | 
| 112 |  | ssrab 4072 | . . . . . . . . . . . . . . . . 17
⊢ (𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ↔ (𝑟 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣)) | 
| 113 | 112 | baib 535 | . . . . . . . . . . . . . . . 16
⊢ (𝑟 ⊆ 𝑋 → (𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ↔ ∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣)) | 
| 114 | 111, 113 | syl 17 | . . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → (𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ↔ ∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣)) | 
| 115 |  | xpss2 5704 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ⊆ 𝑋 → (𝑘 × 𝑟) ⊆ (𝑘 × 𝑋)) | 
| 116 | 111, 115 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → (𝑘 × 𝑟) ⊆ (𝑘 × 𝑋)) | 
| 117 | 116 | biantrud 531 | . . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → ((𝑘 × 𝑟) ⊆ 𝑣 ↔ ((𝑘 × 𝑟) ⊆ 𝑣 ∧ (𝑘 × 𝑟) ⊆ (𝑘 × 𝑋)))) | 
| 118 |  | iunid 5059 | . . . . . . . . . . . . . . . . . . . 20
⊢ ∪ 𝑥 ∈ 𝑟 {𝑥} = 𝑟 | 
| 119 | 118 | xpeq2i 5711 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 × ∪ 𝑥 ∈ 𝑟 {𝑥}) = (𝑘 × 𝑟) | 
| 120 |  | xpiundi 5755 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 × ∪ 𝑥 ∈ 𝑟 {𝑥}) = ∪
𝑥 ∈ 𝑟 (𝑘 × {𝑥}) | 
| 121 | 119, 120 | eqtr3i 2766 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 × 𝑟) = ∪ 𝑥 ∈ 𝑟 (𝑘 × {𝑥}) | 
| 122 | 121 | sseq1i 4011 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑘 × 𝑟) ⊆ 𝑣 ↔ ∪
𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣) | 
| 123 |  | iunss 5044 | . . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣 ↔ ∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣) | 
| 124 | 122, 123 | bitri 275 | . . . . . . . . . . . . . . . 16
⊢ ((𝑘 × 𝑟) ⊆ 𝑣 ↔ ∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣) | 
| 125 |  | ssin 4238 | . . . . . . . . . . . . . . . 16
⊢ (((𝑘 × 𝑟) ⊆ 𝑣 ∧ (𝑘 × 𝑟) ⊆ (𝑘 × 𝑋)) ↔ (𝑘 × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋))) | 
| 126 | 117, 124,
125 | 3bitr3g 313 | . . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → (∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣 ↔ (𝑘 × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋)))) | 
| 127 | 99 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → 𝑘 = ∪ (𝑆 ↾t 𝑘)) | 
| 128 | 127 | xpeq1d 5713 | . . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → (𝑘 × 𝑟) = (∪ (𝑆 ↾t 𝑘) × 𝑟)) | 
| 129 | 128 | sseq1d 4014 | . . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → ((𝑘 × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋)) ↔ (∪
(𝑆 ↾t
𝑘) × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋)))) | 
| 130 | 114, 126,
129 | 3bitrd 305 | . . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → (𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ↔ (∪ (𝑆 ↾t 𝑘) × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋)))) | 
| 131 | 130 | anbi2d 630 | . . . . . . . . . . . . 13
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → ((𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}) ↔ (𝑤 ∈ 𝑟 ∧ (∪ (𝑆 ↾t 𝑘) × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋))))) | 
| 132 | 131 | rexbidva 3176 | . . . . . . . . . . . 12
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}) ↔ ∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ (∪ (𝑆 ↾t 𝑘) × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋))))) | 
| 133 | 109, 132 | mpbird 257 | . . . . . . . . . . 11
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → ∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣})) | 
| 134 | 58, 133 | sylan2b 594 | . . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑤 ∈ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}) → ∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣})) | 
| 135 | 134 | ralrimiva 3145 | . . . . . . . . 9
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → ∀𝑤 ∈ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣})) | 
| 136 |  | eltop2 22983 | . . . . . . . . . 10
⊢ (𝑅 ∈ Top → ({𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ∈ 𝑅 ↔ ∀𝑤 ∈ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}))) | 
| 137 | 14, 68, 136 | 3syl 18 | . . . . . . . . 9
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → ({𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ∈ 𝑅 ↔ ∀𝑤 ∈ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}))) | 
| 138 | 135, 137 | mpbird 257 | . . . . . . . 8
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ∈ 𝑅) | 
| 139 | 54, 138 | eqeltrd 2840 | . . . . . . 7
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → {𝑥 ∈ 𝑋 ∣ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑅) | 
| 140 |  | imaeq2 6073 | . . . . . . . . 9
⊢ (𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡𝐹 “ 𝑧) = (◡𝐹 “ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) | 
| 141 | 7 | mptpreima 6257 | . . . . . . . . 9
⊢ (◡𝐹 “ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑥 ∈ 𝑋 ∣ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} | 
| 142 | 140, 141 | eqtrdi 2792 | . . . . . . . 8
⊢ (𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡𝐹 “ 𝑧) = {𝑥 ∈ 𝑋 ∣ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}}) | 
| 143 | 142 | eleq1d 2825 | . . . . . . 7
⊢ (𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → ((◡𝐹 “ 𝑧) ∈ 𝑅 ↔ {𝑥 ∈ 𝑋 ∣ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑅)) | 
| 144 | 139, 143 | syl5ibrcom 247 | . . . . . 6
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → (𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡𝐹 “ 𝑧) ∈ 𝑅)) | 
| 145 | 144 | expimpd 453 | . . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) → (((𝑆 ↾t 𝑘) ∈ Comp ∧ 𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡𝐹 “ 𝑧) ∈ 𝑅)) | 
| 146 | 145 | rexlimdvva 3212 | . . . 4
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (∃𝑘 ∈ 𝒫 ∪ 𝑆∃𝑣 ∈ (𝑆 ×t 𝑅)((𝑆 ↾t 𝑘) ∈ Comp ∧ 𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡𝐹 “ 𝑧) ∈ 𝑅)) | 
| 147 | 13, 146 | biimtrid 242 | . . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑧 ∈ ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡𝐹 “ 𝑧) ∈ 𝑅)) | 
| 148 | 147 | ralrimiv 3144 | . 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑧 ∈ ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})(◡𝐹 “ 𝑧) ∈ 𝑅) | 
| 149 |  | simpl 482 | . . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑅 ∈ (TopOn‘𝑋)) | 
| 150 |  | ovex 7465 | . . . . . 6
⊢ (𝑆 Cn (𝑆 ×t 𝑅)) ∈ V | 
| 151 | 150 | pwex 5379 | . . . . 5
⊢ 𝒫
(𝑆 Cn (𝑆 ×t 𝑅)) ∈ V | 
| 152 | 9, 10, 11 | xkotf 23594 | . . . . . 6
⊢ (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp} × (𝑆
×t 𝑅))⟶𝒫 (𝑆 Cn (𝑆 ×t 𝑅)) | 
| 153 |  | frn 6742 | . . . . . 6
⊢ ((𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp} × (𝑆
×t 𝑅))⟶𝒫 (𝑆 Cn (𝑆 ×t 𝑅)) → ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑆 Cn (𝑆 ×t 𝑅))) | 
| 154 | 152, 153 | ax-mp 5 | . . . . 5
⊢ ran
(𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑆 Cn (𝑆 ×t 𝑅)) | 
| 155 | 151, 154 | ssexi 5321 | . . . 4
⊢ ran
(𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V | 
| 156 | 155 | a1i 11 | . . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V) | 
| 157 | 9, 10, 11 | xkoval 23596 | . . . 4
⊢ ((𝑆 ∈ Top ∧ (𝑆 ×t 𝑅) ∈ Top) → ((𝑆 ×t 𝑅) ↑ko 𝑆) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) | 
| 158 | 67, 70, 157 | syl2anc 584 | . . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((𝑆 ×t 𝑅) ↑ko 𝑆) = (topGen‘(fi‘ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) | 
| 159 |  | eqid 2736 | . . . . 5
⊢ ((𝑆 ×t 𝑅) ↑ko 𝑆) = ((𝑆 ×t 𝑅) ↑ko 𝑆) | 
| 160 | 159 | xkotopon 23609 | . . . 4
⊢ ((𝑆 ∈ Top ∧ (𝑆 ×t 𝑅) ∈ Top) → ((𝑆 ×t 𝑅) ↑ko 𝑆) ∈ (TopOn‘(𝑆 Cn (𝑆 ×t 𝑅)))) | 
| 161 | 67, 70, 160 | syl2anc 584 | . . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((𝑆 ×t 𝑅) ↑ko 𝑆) ∈ (TopOn‘(𝑆 Cn (𝑆 ×t 𝑅)))) | 
| 162 | 149, 156,
158, 161 | subbascn 23263 | . 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑅 Cn ((𝑆 ×t 𝑅) ↑ko 𝑆)) ↔ (𝐹:𝑋⟶(𝑆 Cn (𝑆 ×t 𝑅)) ∧ ∀𝑧 ∈ ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})(◡𝐹 “ 𝑧) ∈ 𝑅))) | 
| 163 | 8, 148, 162 | mpbir2and 713 | 1
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝐹 ∈ (𝑅 Cn ((𝑆 ×t 𝑅) ↑ko 𝑆))) |