Step | Hyp | Ref
| Expression |
1 | | simplr 765 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → 𝑆 ∈ (TopOn‘𝑌)) |
2 | 1 | cnmptid 22720 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝑦) ∈ (𝑆 Cn 𝑆)) |
3 | | simpll 763 |
. . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ (TopOn‘𝑋)) |
4 | | simpr 484 |
. . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
5 | 1, 3, 4 | cnmptc 22721 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝑥) ∈ (𝑆 Cn 𝑅)) |
6 | 1, 2, 5 | cnmpt1t 22724 |
. . 3
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ (𝑆 Cn (𝑆 ×t 𝑅))) |
7 | | xkoinjcn.3 |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) |
8 | 6, 7 | fmptd 6970 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝐹:𝑋⟶(𝑆 Cn (𝑆 ×t 𝑅))) |
9 | | eqid 2738 |
. . . . . 6
⊢ ∪ 𝑆 =
∪ 𝑆 |
10 | | eqid 2738 |
. . . . . 6
⊢ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp} = {𝑤 ∈
𝒫 ∪ 𝑆 ∣ (𝑆 ↾t 𝑤) ∈ Comp} |
11 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
12 | 9, 10, 11 | xkobval 22645 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑧 ∣ ∃𝑘 ∈ 𝒫 ∪ 𝑆∃𝑣 ∈ (𝑆 ×t 𝑅)((𝑆 ↾t 𝑘) ∈ Comp ∧ 𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} |
13 | 12 | abeq2i 2874 |
. . . 4
⊢ (𝑧 ∈ ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 ∪ 𝑆∃𝑣 ∈ (𝑆 ×t 𝑅)((𝑆 ↾t 𝑘) ∈ Comp ∧ 𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
14 | | simpll 763 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → (𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌))) |
15 | 14, 6 | sylan 579 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ (𝑆 Cn (𝑆 ×t 𝑅))) |
16 | | imaeq1 5953 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) → (𝑓 “ 𝑘) = ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘)) |
17 | 16 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) → ((𝑓 “ 𝑘) ⊆ 𝑣 ↔ ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘) ⊆ 𝑣)) |
18 | 17 | elrab3 3618 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ (𝑆 Cn (𝑆 ×t 𝑅)) → ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘) ⊆ 𝑣)) |
19 | 15, 18 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘) ⊆ 𝑣)) |
20 | | funmpt 6456 |
. . . . . . . . . . 11
⊢ Fun
(𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) |
21 | | simplrl 773 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → 𝑘 ∈ 𝒫 ∪ 𝑆) |
22 | 21 | elpwid 4541 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → 𝑘 ⊆ ∪ 𝑆) |
23 | 14 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → 𝑆 ∈ (TopOn‘𝑌)) |
24 | | toponuni 21971 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝑆) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → 𝑌 = ∪ 𝑆) |
26 | 22, 25 | sseqtrrd 3958 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → 𝑘 ⊆ 𝑌) |
27 | 26 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → 𝑘 ⊆ 𝑌) |
28 | | dmmptg 6134 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
𝑌 〈𝑦, 𝑥〉 ∈ V → dom (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = 𝑌) |
29 | | opex 5373 |
. . . . . . . . . . . . . 14
⊢
〈𝑦, 𝑥〉 ∈ V |
30 | 29 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑌 → 〈𝑦, 𝑥〉 ∈ V) |
31 | 28, 30 | mprg 3077 |
. . . . . . . . . . . 12
⊢ dom
(𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = 𝑌 |
32 | 27, 31 | sseqtrrdi 3968 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → 𝑘 ⊆ dom (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) |
33 | | funimass4 6816 |
. . . . . . . . . . 11
⊢ ((Fun
(𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∧ 𝑘 ⊆ dom (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) → (((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘) ⊆ 𝑣 ↔ ∀𝑧 ∈ 𝑘 ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣)) |
34 | 20, 32, 33 | sylancr 586 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → (((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) “ 𝑘) ⊆ 𝑣 ↔ ∀𝑧 ∈ 𝑘 ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣)) |
35 | 27 | sselda 3917 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑘) → 𝑧 ∈ 𝑌) |
36 | | opeq1 4801 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → 〈𝑦, 𝑥〉 = 〈𝑧, 𝑥〉) |
37 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) |
38 | | opex 5373 |
. . . . . . . . . . . . . . . 16
⊢
〈𝑧, 𝑥〉 ∈ V |
39 | 36, 37, 38 | fvmpt 6857 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑌 → ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) = 〈𝑧, 𝑥〉) |
40 | 35, 39 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑘) → ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) = 〈𝑧, 𝑥〉) |
41 | 40 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑘) → (((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣 ↔ 〈𝑧, 𝑥〉 ∈ 𝑣)) |
42 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
43 | | opeq2 4802 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑥 → 〈𝑧, 𝑤〉 = 〈𝑧, 𝑥〉) |
44 | 43 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (〈𝑧, 𝑤〉 ∈ 𝑣 ↔ 〈𝑧, 𝑥〉 ∈ 𝑣)) |
45 | 42, 44 | ralsn 4614 |
. . . . . . . . . . . . 13
⊢
(∀𝑤 ∈
{𝑥}〈𝑧, 𝑤〉 ∈ 𝑣 ↔ 〈𝑧, 𝑥〉 ∈ 𝑣) |
46 | 41, 45 | bitr4di 288 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑘) → (((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣 ↔ ∀𝑤 ∈ {𝑥}〈𝑧, 𝑤〉 ∈ 𝑣)) |
47 | 46 | ralbidva 3119 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → (∀𝑧 ∈ 𝑘 ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣 ↔ ∀𝑧 ∈ 𝑘 ∀𝑤 ∈ {𝑥}〈𝑧, 𝑤〉 ∈ 𝑣)) |
48 | | dfss3 3905 |
. . . . . . . . . . . 12
⊢ ((𝑘 × {𝑥}) ⊆ 𝑣 ↔ ∀𝑡 ∈ (𝑘 × {𝑥})𝑡 ∈ 𝑣) |
49 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 〈𝑧, 𝑤〉 → (𝑡 ∈ 𝑣 ↔ 〈𝑧, 𝑤〉 ∈ 𝑣)) |
50 | 49 | ralxp 5739 |
. . . . . . . . . . . 12
⊢
(∀𝑡 ∈
(𝑘 × {𝑥})𝑡 ∈ 𝑣 ↔ ∀𝑧 ∈ 𝑘 ∀𝑤 ∈ {𝑥}〈𝑧, 𝑤〉 ∈ 𝑣) |
51 | 48, 50 | bitri 274 |
. . . . . . . . . . 11
⊢ ((𝑘 × {𝑥}) ⊆ 𝑣 ↔ ∀𝑧 ∈ 𝑘 ∀𝑤 ∈ {𝑥}〈𝑧, 𝑤〉 ∈ 𝑣) |
52 | 47, 51 | bitr4di 288 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → (∀𝑧 ∈ 𝑘 ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)‘𝑧) ∈ 𝑣 ↔ (𝑘 × {𝑥}) ⊆ 𝑣)) |
53 | 19, 34, 52 | 3bitrd 304 |
. . . . . . . . 9
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ (𝑘 × {𝑥}) ⊆ 𝑣)) |
54 | 53 | rabbidva 3402 |
. . . . . . . 8
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → {𝑥 ∈ 𝑋 ∣ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} = {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}) |
55 | | sneq 4568 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → {𝑥} = {𝑤}) |
56 | 55 | xpeq2d 5610 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝑘 × {𝑥}) = (𝑘 × {𝑤})) |
57 | 56 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝑘 × {𝑥}) ⊆ 𝑣 ↔ (𝑘 × {𝑤}) ⊆ 𝑣)) |
58 | 57 | elrab 3617 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ↔ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) |
59 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ∪ (𝑆
↾t 𝑘) =
∪ (𝑆 ↾t 𝑘) |
60 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑅 =
∪ 𝑅 |
61 | | simplr 765 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑆 ↾t 𝑘) ∈ Comp) |
62 | | simpll 763 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) → 𝑅 ∈ (TopOn‘𝑋)) |
63 | 62 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑅 ∈ (TopOn‘𝑋)) |
64 | | topontop 21970 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑅 ∈ Top) |
66 | | topontop 21970 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top) |
67 | 66 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑆 ∈ Top) |
68 | 64 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑅 ∈ Top) |
69 | | txtop 22628 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ Top ∧ 𝑅 ∈ Top) → (𝑆 ×t 𝑅) ∈ Top) |
70 | 67, 68, 69 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆 ×t 𝑅) ∈ Top) |
71 | 70 | ad3antrrr 726 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑆 ×t 𝑅) ∈ Top) |
72 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑘 ∈ V |
73 | | toponmax 21983 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑅) |
74 | 63, 73 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑋 ∈ 𝑅) |
75 | | xpexg 7578 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ V ∧ 𝑋 ∈ 𝑅) → (𝑘 × 𝑋) ∈ V) |
76 | 72, 74, 75 | sylancr 586 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑘 × 𝑋) ∈ V) |
77 | | simprr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) → 𝑣 ∈ (𝑆 ×t 𝑅)) |
78 | 77 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑣 ∈ (𝑆 ×t 𝑅)) |
79 | | elrestr 17056 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ×t 𝑅) ∈ Top ∧ (𝑘 × 𝑋) ∈ V ∧ 𝑣 ∈ (𝑆 ×t 𝑅)) → (𝑣 ∩ (𝑘 × 𝑋)) ∈ ((𝑆 ×t 𝑅) ↾t (𝑘 × 𝑋))) |
80 | 71, 76, 78, 79 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑣 ∩ (𝑘 × 𝑋)) ∈ ((𝑆 ×t 𝑅) ↾t (𝑘 × 𝑋))) |
81 | 67 | ad3antrrr 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑆 ∈ Top) |
82 | 72 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑘 ∈ V) |
83 | | txrest 22690 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ Top ∧ 𝑅 ∈ Top) ∧ (𝑘 ∈ V ∧ 𝑋 ∈ 𝑅)) → ((𝑆 ×t 𝑅) ↾t (𝑘 × 𝑋)) = ((𝑆 ↾t 𝑘) ×t (𝑅 ↾t 𝑋))) |
84 | 81, 65, 82, 74, 83 | syl22anc 835 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → ((𝑆 ×t 𝑅) ↾t (𝑘 × 𝑋)) = ((𝑆 ↾t 𝑘) ×t (𝑅 ↾t 𝑋))) |
85 | | toponuni 21971 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑅) |
86 | 63, 85 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑋 = ∪ 𝑅) |
87 | 86 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑅 ↾t 𝑋) = (𝑅 ↾t ∪ 𝑅)) |
88 | 60 | restid 17061 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ (TopOn‘𝑋) → (𝑅 ↾t ∪ 𝑅) =
𝑅) |
89 | 63, 88 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑅 ↾t ∪ 𝑅) =
𝑅) |
90 | 87, 89 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑅 ↾t 𝑋) = 𝑅) |
91 | 90 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → ((𝑆 ↾t 𝑘) ×t (𝑅 ↾t 𝑋)) = ((𝑆 ↾t 𝑘) ×t 𝑅)) |
92 | 84, 91 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → ((𝑆 ×t 𝑅) ↾t (𝑘 × 𝑋)) = ((𝑆 ↾t 𝑘) ×t 𝑅)) |
93 | 80, 92 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑣 ∩ (𝑘 × 𝑋)) ∈ ((𝑆 ↾t 𝑘) ×t 𝑅)) |
94 | 23 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑆 ∈ (TopOn‘𝑌)) |
95 | 26 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑘 ⊆ 𝑌) |
96 | | resttopon 22220 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ (TopOn‘𝑌) ∧ 𝑘 ⊆ 𝑌) → (𝑆 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
97 | 94, 95, 96 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑆 ↾t 𝑘) ∈ (TopOn‘𝑘)) |
98 | | toponuni 21971 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ↾t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 = ∪ (𝑆 ↾t 𝑘)) |
99 | 97, 98 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑘 = ∪ (𝑆 ↾t 𝑘)) |
100 | 99 | xpeq1d 5609 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑘 × {𝑤}) = (∪ (𝑆 ↾t 𝑘) × {𝑤})) |
101 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑘 × {𝑤}) ⊆ 𝑣) |
102 | | simprl 767 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑤 ∈ 𝑋) |
103 | 102 | snssd 4739 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → {𝑤} ⊆ 𝑋) |
104 | | xpss2 5600 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑤} ⊆ 𝑋 → (𝑘 × {𝑤}) ⊆ (𝑘 × 𝑋)) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑘 × {𝑤}) ⊆ (𝑘 × 𝑋)) |
106 | 101, 105 | ssind 4163 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (𝑘 × {𝑤}) ⊆ (𝑣 ∩ (𝑘 × 𝑋))) |
107 | 100, 106 | eqsstrrd 3956 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (∪
(𝑆 ↾t
𝑘) × {𝑤}) ⊆ (𝑣 ∩ (𝑘 × 𝑋))) |
108 | 102, 86 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → 𝑤 ∈ ∪ 𝑅) |
109 | 59, 60, 61, 65, 93, 107, 108 | txtube 22699 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → ∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ (∪ (𝑆 ↾t 𝑘) × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋)))) |
110 | | toponss 21984 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑟 ∈ 𝑅) → 𝑟 ⊆ 𝑋) |
111 | 63, 110 | sylan 579 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → 𝑟 ⊆ 𝑋) |
112 | | ssrab 4002 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ↔ (𝑟 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣)) |
113 | 112 | baib 535 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ⊆ 𝑋 → (𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ↔ ∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣)) |
114 | 111, 113 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → (𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ↔ ∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣)) |
115 | | xpss2 5600 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ⊆ 𝑋 → (𝑘 × 𝑟) ⊆ (𝑘 × 𝑋)) |
116 | 111, 115 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → (𝑘 × 𝑟) ⊆ (𝑘 × 𝑋)) |
117 | 116 | biantrud 531 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → ((𝑘 × 𝑟) ⊆ 𝑣 ↔ ((𝑘 × 𝑟) ⊆ 𝑣 ∧ (𝑘 × 𝑟) ⊆ (𝑘 × 𝑋)))) |
118 | | iunid 4986 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ 𝑥 ∈ 𝑟 {𝑥} = 𝑟 |
119 | 118 | xpeq2i 5607 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 × ∪ 𝑥 ∈ 𝑟 {𝑥}) = (𝑘 × 𝑟) |
120 | | xpiundi 5648 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 × ∪ 𝑥 ∈ 𝑟 {𝑥}) = ∪
𝑥 ∈ 𝑟 (𝑘 × {𝑥}) |
121 | 119, 120 | eqtr3i 2768 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 × 𝑟) = ∪ 𝑥 ∈ 𝑟 (𝑘 × {𝑥}) |
122 | 121 | sseq1i 3945 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 × 𝑟) ⊆ 𝑣 ↔ ∪
𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣) |
123 | | iunss 4971 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣 ↔ ∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣) |
124 | 122, 123 | bitri 274 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 × 𝑟) ⊆ 𝑣 ↔ ∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣) |
125 | | ssin 4161 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 × 𝑟) ⊆ 𝑣 ∧ (𝑘 × 𝑟) ⊆ (𝑘 × 𝑋)) ↔ (𝑘 × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋))) |
126 | 117, 124,
125 | 3bitr3g 312 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → (∀𝑥 ∈ 𝑟 (𝑘 × {𝑥}) ⊆ 𝑣 ↔ (𝑘 × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋)))) |
127 | 99 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → 𝑘 = ∪ (𝑆 ↾t 𝑘)) |
128 | 127 | xpeq1d 5609 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → (𝑘 × 𝑟) = (∪ (𝑆 ↾t 𝑘) × 𝑟)) |
129 | 128 | sseq1d 3948 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → ((𝑘 × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋)) ↔ (∪
(𝑆 ↾t
𝑘) × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋)))) |
130 | 114, 126,
129 | 3bitrd 304 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → (𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ↔ (∪ (𝑆 ↾t 𝑘) × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋)))) |
131 | 130 | anbi2d 628 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) ∧ 𝑟 ∈ 𝑅) → ((𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}) ↔ (𝑤 ∈ 𝑟 ∧ (∪ (𝑆 ↾t 𝑘) × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋))))) |
132 | 131 | rexbidva 3224 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → (∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}) ↔ ∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ (∪ (𝑆 ↾t 𝑘) × 𝑟) ⊆ (𝑣 ∩ (𝑘 × 𝑋))))) |
133 | 109, 132 | mpbird 256 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ (𝑤 ∈ 𝑋 ∧ (𝑘 × {𝑤}) ⊆ 𝑣)) → ∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣})) |
134 | 58, 133 | sylan2b 593 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) ∧ 𝑤 ∈ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}) → ∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣})) |
135 | 134 | ralrimiva 3107 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → ∀𝑤 ∈ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣})) |
136 | | eltop2 22033 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Top → ({𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ∈ 𝑅 ↔ ∀𝑤 ∈ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}))) |
137 | 14, 68, 136 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → ({𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ∈ 𝑅 ↔ ∀𝑤 ∈ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}∃𝑟 ∈ 𝑅 (𝑤 ∈ 𝑟 ∧ 𝑟 ⊆ {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣}))) |
138 | 135, 137 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → {𝑥 ∈ 𝑋 ∣ (𝑘 × {𝑥}) ⊆ 𝑣} ∈ 𝑅) |
139 | 54, 138 | eqeltrd 2839 |
. . . . . . 7
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → {𝑥 ∈ 𝑋 ∣ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑅) |
140 | | imaeq2 5954 |
. . . . . . . . 9
⊢ (𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡𝐹 “ 𝑧) = (◡𝐹 “ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
141 | 7 | mptpreima 6130 |
. . . . . . . . 9
⊢ (◡𝐹 “ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑥 ∈ 𝑋 ∣ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} |
142 | 140, 141 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡𝐹 “ 𝑧) = {𝑥 ∈ 𝑋 ∣ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}}) |
143 | 142 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → ((◡𝐹 “ 𝑧) ∈ 𝑅 ↔ {𝑥 ∈ 𝑋 ∣ (𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) ∈ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑅)) |
144 | 139, 143 | syl5ibrcom 246 |
. . . . . 6
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) ∧ (𝑆 ↾t 𝑘) ∈ Comp) → (𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡𝐹 “ 𝑧) ∈ 𝑅)) |
145 | 144 | expimpd 453 |
. . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑆
∧ 𝑣 ∈ (𝑆 ×t 𝑅))) → (((𝑆 ↾t 𝑘) ∈ Comp ∧ 𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡𝐹 “ 𝑧) ∈ 𝑅)) |
146 | 145 | rexlimdvva 3222 |
. . . 4
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (∃𝑘 ∈ 𝒫 ∪ 𝑆∃𝑣 ∈ (𝑆 ×t 𝑅)((𝑆 ↾t 𝑘) ∈ Comp ∧ 𝑧 = {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡𝐹 “ 𝑧) ∈ 𝑅)) |
147 | 13, 146 | syl5bi 241 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑧 ∈ ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡𝐹 “ 𝑧) ∈ 𝑅)) |
148 | 147 | ralrimiv 3106 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑧 ∈ ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})(◡𝐹 “ 𝑧) ∈ 𝑅) |
149 | | simpl 482 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑅 ∈ (TopOn‘𝑋)) |
150 | | ovex 7288 |
. . . . . 6
⊢ (𝑆 Cn (𝑆 ×t 𝑅)) ∈ V |
151 | 150 | pwex 5298 |
. . . . 5
⊢ 𝒫
(𝑆 Cn (𝑆 ×t 𝑅)) ∈ V |
152 | 9, 10, 11 | xkotf 22644 |
. . . . . 6
⊢ (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp} × (𝑆
×t 𝑅))⟶𝒫 (𝑆 Cn (𝑆 ×t 𝑅)) |
153 | | frn 6591 |
. . . . . 6
⊢ ((𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp} × (𝑆
×t 𝑅))⟶𝒫 (𝑆 Cn (𝑆 ×t 𝑅)) → ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑆 Cn (𝑆 ×t 𝑅))) |
154 | 152, 153 | ax-mp 5 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑆 Cn (𝑆 ×t 𝑅)) |
155 | 151, 154 | ssexi 5241 |
. . . 4
⊢ ran
(𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V |
156 | 155 | a1i 11 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V) |
157 | 9, 10, 11 | xkoval 22646 |
. . . 4
⊢ ((𝑆 ∈ Top ∧ (𝑆 ×t 𝑅) ∈ Top) → ((𝑆 ×t 𝑅) ↑ko 𝑆) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
158 | 67, 70, 157 | syl2anc 583 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((𝑆 ×t 𝑅) ↑ko 𝑆) = (topGen‘(fi‘ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
159 | | eqid 2738 |
. . . . 5
⊢ ((𝑆 ×t 𝑅) ↑ko 𝑆) = ((𝑆 ×t 𝑅) ↑ko 𝑆) |
160 | 159 | xkotopon 22659 |
. . . 4
⊢ ((𝑆 ∈ Top ∧ (𝑆 ×t 𝑅) ∈ Top) → ((𝑆 ×t 𝑅) ↑ko 𝑆) ∈ (TopOn‘(𝑆 Cn (𝑆 ×t 𝑅)))) |
161 | 67, 70, 160 | syl2anc 583 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((𝑆 ×t 𝑅) ↑ko 𝑆) ∈ (TopOn‘(𝑆 Cn (𝑆 ×t 𝑅)))) |
162 | 149, 156,
158, 161 | subbascn 22313 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑅 Cn ((𝑆 ×t 𝑅) ↑ko 𝑆)) ↔ (𝐹:𝑋⟶(𝑆 Cn (𝑆 ×t 𝑅)) ∧ ∀𝑧 ∈ ran (𝑘 ∈ {𝑤 ∈ 𝒫 ∪ 𝑆
∣ (𝑆
↾t 𝑤)
∈ Comp}, 𝑣 ∈
(𝑆 ×t
𝑅) ↦ {𝑓 ∈ (𝑆 Cn (𝑆 ×t 𝑅)) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})(◡𝐹 “ 𝑧) ∈ 𝑅))) |
163 | 8, 148, 162 | mpbir2and 709 |
1
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝐹 ∈ (𝑅 Cn ((𝑆 ×t 𝑅) ↑ko 𝑆))) |