![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpprsng | Structured version Visualization version GIF version |
Description: The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019.) |
Ref | Expression |
---|---|
xpprsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4633 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | 1 | xpeq1i 5706 | . 2 ⊢ ({𝐴, 𝐵} × {𝐶}) = (({𝐴} ∪ {𝐵}) × {𝐶}) |
3 | xpsng 7152 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑈) → ({𝐴} × {𝐶}) = {〈𝐴, 𝐶〉}) | |
4 | 3 | 3adant2 1128 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴} × {𝐶}) = {〈𝐴, 𝐶〉}) |
5 | xpsng 7152 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐵} × {𝐶}) = {〈𝐵, 𝐶〉}) | |
6 | 5 | 3adant1 1127 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐵} × {𝐶}) = {〈𝐵, 𝐶〉}) |
7 | 4, 6 | uneq12d 4163 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐶〉})) |
8 | xpundir 5749 | . . 3 ⊢ (({𝐴} ∪ {𝐵}) × {𝐶}) = (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) | |
9 | df-pr 4633 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐶〉}) | |
10 | 7, 8, 9 | 3eqtr4g 2792 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (({𝐴} ∪ {𝐵}) × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
11 | 2, 10 | eqtrid 2779 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∪ cun 3945 {csn 4630 {cpr 4632 〈cop 4636 × cxp 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 |
This theorem is referenced by: linds2eq 33114 zlmodzxz0 47471 ehl2eudisval0 47849 |
Copyright terms: Public domain | W3C validator |