| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpprsng | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019.) |
| Ref | Expression |
|---|---|
| xpprsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4578 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 2 | 1 | xpeq1i 5645 | . 2 ⊢ ({𝐴, 𝐵} × {𝐶}) = (({𝐴} ∪ {𝐵}) × {𝐶}) |
| 3 | xpsng 7078 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑈) → ({𝐴} × {𝐶}) = {〈𝐴, 𝐶〉}) | |
| 4 | 3 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴} × {𝐶}) = {〈𝐴, 𝐶〉}) |
| 5 | xpsng 7078 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐵} × {𝐶}) = {〈𝐵, 𝐶〉}) | |
| 6 | 5 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐵} × {𝐶}) = {〈𝐵, 𝐶〉}) |
| 7 | 4, 6 | uneq12d 4118 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐶〉})) |
| 8 | xpundir 5689 | . . 3 ⊢ (({𝐴} ∪ {𝐵}) × {𝐶}) = (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) | |
| 9 | df-pr 4578 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐶〉}) | |
| 10 | 7, 8, 9 | 3eqtr4g 2793 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (({𝐴} ∪ {𝐵}) × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
| 11 | 2, 10 | eqtrid 2780 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 {csn 4575 {cpr 4577 〈cop 4581 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 |
| This theorem is referenced by: linds2eq 33353 zlmodzxz0 48481 ehl2eudisval0 48851 |
| Copyright terms: Public domain | W3C validator |