![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpprsng | Structured version Visualization version GIF version |
Description: The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019.) |
Ref | Expression |
---|---|
xpprsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4651 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | 1 | xpeq1i 5726 | . 2 ⊢ ({𝐴, 𝐵} × {𝐶}) = (({𝐴} ∪ {𝐵}) × {𝐶}) |
3 | xpsng 7173 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑈) → ({𝐴} × {𝐶}) = {〈𝐴, 𝐶〉}) | |
4 | 3 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴} × {𝐶}) = {〈𝐴, 𝐶〉}) |
5 | xpsng 7173 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐵} × {𝐶}) = {〈𝐵, 𝐶〉}) | |
6 | 5 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐵} × {𝐶}) = {〈𝐵, 𝐶〉}) |
7 | 4, 6 | uneq12d 4192 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐶〉})) |
8 | xpundir 5769 | . . 3 ⊢ (({𝐴} ∪ {𝐵}) × {𝐶}) = (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) | |
9 | df-pr 4651 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐶〉}) | |
10 | 7, 8, 9 | 3eqtr4g 2805 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (({𝐴} ∪ {𝐵}) × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
11 | 2, 10 | eqtrid 2792 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 {csn 4648 {cpr 4650 〈cop 4654 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: linds2eq 33374 zlmodzxz0 48081 ehl2eudisval0 48459 |
Copyright terms: Public domain | W3C validator |