MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpprsng Structured version   Visualization version   GIF version

Theorem xpprsng 7133
Description: The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019.)
Assertion
Ref Expression
xpprsng ((𝐴𝑉𝐵𝑊𝐶𝑈) → ({𝐴, 𝐵} × {𝐶}) = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐶⟩})

Proof of Theorem xpprsng
StepHypRef Expression
1 df-pr 4626 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21xpeq1i 5695 . 2 ({𝐴, 𝐵} × {𝐶}) = (({𝐴} ∪ {𝐵}) × {𝐶})
3 xpsng 7132 . . . . 5 ((𝐴𝑉𝐶𝑈) → ({𝐴} × {𝐶}) = {⟨𝐴, 𝐶⟩})
433adant2 1128 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑈) → ({𝐴} × {𝐶}) = {⟨𝐴, 𝐶⟩})
5 xpsng 7132 . . . . 5 ((𝐵𝑊𝐶𝑈) → ({𝐵} × {𝐶}) = {⟨𝐵, 𝐶⟩})
653adant1 1127 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑈) → ({𝐵} × {𝐶}) = {⟨𝐵, 𝐶⟩})
74, 6uneq12d 4159 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑈) → (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐶⟩}))
8 xpundir 5738 . . 3 (({𝐴} ∪ {𝐵}) × {𝐶}) = (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶}))
9 df-pr 4626 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐶⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐶⟩})
107, 8, 93eqtr4g 2791 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑈) → (({𝐴} ∪ {𝐵}) × {𝐶}) = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐶⟩})
112, 10eqtrid 2778 1 ((𝐴𝑉𝐵𝑊𝐶𝑈) → ({𝐴, 𝐵} × {𝐶}) = {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐶⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  cun 3941  {csn 4623  {cpr 4625  cop 4629   × cxp 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543
This theorem is referenced by:  linds2eq  33002  zlmodzxz0  47290  ehl2eudisval0  47668
  Copyright terms: Public domain W3C validator