| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpprsng | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of an unordered pair and a singleton. (Contributed by AV, 20-May-2019.) |
| Ref | Expression |
|---|---|
| xpprsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4604 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 2 | 1 | xpeq1i 5680 | . 2 ⊢ ({𝐴, 𝐵} × {𝐶}) = (({𝐴} ∪ {𝐵}) × {𝐶}) |
| 3 | xpsng 7129 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑈) → ({𝐴} × {𝐶}) = {〈𝐴, 𝐶〉}) | |
| 4 | 3 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴} × {𝐶}) = {〈𝐴, 𝐶〉}) |
| 5 | xpsng 7129 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐵} × {𝐶}) = {〈𝐵, 𝐶〉}) | |
| 6 | 5 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐵} × {𝐶}) = {〈𝐵, 𝐶〉}) |
| 7 | 4, 6 | uneq12d 4144 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐶〉})) |
| 8 | xpundir 5724 | . . 3 ⊢ (({𝐴} ∪ {𝐵}) × {𝐶}) = (({𝐴} × {𝐶}) ∪ ({𝐵} × {𝐶})) | |
| 9 | df-pr 4604 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐶〉}) | |
| 10 | 7, 8, 9 | 3eqtr4g 2795 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → (({𝐴} ∪ {𝐵}) × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
| 11 | 2, 10 | eqtrid 2782 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} × {𝐶}) = {〈𝐴, 𝐶〉, 〈𝐵, 𝐶〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 {csn 4601 {cpr 4603 〈cop 4607 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 |
| This theorem is referenced by: linds2eq 33396 zlmodzxz0 48331 ehl2eudisval0 48705 |
| Copyright terms: Public domain | W3C validator |