MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashxplem Structured version   Visualization version   GIF version

Theorem hashxplem 14445
Description: Lemma for hashxp 14446. (Contributed by Paul Chapman, 30-Nov-2012.)
Hypothesis
Ref Expression
hashxplem.1 𝐵 ∈ Fin
Assertion
Ref Expression
hashxplem (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))

Proof of Theorem hashxplem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5695 . . . 4 (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵))
21fveq2d 6904 . . 3 (𝑥 = ∅ → (♯‘(𝑥 × 𝐵)) = (♯‘(∅ × 𝐵)))
3 fveq2 6900 . . . 4 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
43oveq1d 7438 . . 3 (𝑥 = ∅ → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘∅) · (♯‘𝐵)))
52, 4eqeq12d 2741 . 2 (𝑥 = ∅ → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵))))
6 xpeq1 5695 . . . 4 (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵))
76fveq2d 6904 . . 3 (𝑥 = 𝑦 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝑦 × 𝐵)))
8 fveq2 6900 . . . 4 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
98oveq1d 7438 . . 3 (𝑥 = 𝑦 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝑦) · (♯‘𝐵)))
107, 9eqeq12d 2741 . 2 (𝑥 = 𝑦 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))))
11 xpeq1 5695 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∪ {𝑧}) × 𝐵))
1211fveq2d 6904 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝑥 × 𝐵)) = (♯‘((𝑦 ∪ {𝑧}) × 𝐵)))
13 fveq2 6900 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1413oveq1d 7438 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
1512, 14eqeq12d 2741 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
16 xpeq1 5695 . . . 4 (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵))
1716fveq2d 6904 . . 3 (𝑥 = 𝐴 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝐴 × 𝐵)))
18 fveq2 6900 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
1918oveq1d 7438 . . 3 (𝑥 = 𝐴 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
2017, 19eqeq12d 2741 . 2 (𝑥 = 𝐴 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))))
21 hashxplem.1 . . . 4 𝐵 ∈ Fin
22 hashcl 14368 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
2322nn0cnd 12581 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
2423mul02d 11458 . . . 4 (𝐵 ∈ Fin → (0 · (♯‘𝐵)) = 0)
2521, 24ax-mp 5 . . 3 (0 · (♯‘𝐵)) = 0
26 hash0 14379 . . . 4 (♯‘∅) = 0
2726oveq1i 7433 . . 3 ((♯‘∅) · (♯‘𝐵)) = (0 · (♯‘𝐵))
28 0xp 5779 . . . . 5 (∅ × 𝐵) = ∅
2928fveq2i 6903 . . . 4 (♯‘(∅ × 𝐵)) = (♯‘∅)
3029, 26eqtri 2753 . . 3 (♯‘(∅ × 𝐵)) = 0
3125, 27, 303eqtr4ri 2764 . 2 (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵))
32 oveq1 7430 . . . . 5 ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
3332adantl 480 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
34 xpundir 5750 . . . . . . 7 ((𝑦 ∪ {𝑧}) × 𝐵) = ((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))
3534fveq2i 6903 . . . . . 6 (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵)))
36 xpfi 9355 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)
3721, 36mpan2 689 . . . . . . . 8 (𝑦 ∈ Fin → (𝑦 × 𝐵) ∈ Fin)
38 inxp 5837 . . . . . . . . 9 ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ((𝑦 ∩ {𝑧}) × (𝐵𝐵))
39 disjsn 4719 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4039biimpri 227 . . . . . . . . . . 11 𝑧𝑦 → (𝑦 ∩ {𝑧}) = ∅)
4140xpeq1d 5710 . . . . . . . . . 10 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = (∅ × (𝐵𝐵)))
42 0xp 5779 . . . . . . . . . 10 (∅ × (𝐵𝐵)) = ∅
4341, 42eqtrdi 2781 . . . . . . . . 9 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = ∅)
4438, 43eqtrid 2777 . . . . . . . 8 𝑧𝑦 → ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅)
45 snfi 9080 . . . . . . . . . 10 {𝑧} ∈ Fin
46 xpfi 9355 . . . . . . . . . 10 (({𝑧} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑧} × 𝐵) ∈ Fin)
4745, 21, 46mp2an 690 . . . . . . . . 9 ({𝑧} × 𝐵) ∈ Fin
48 hashun 14394 . . . . . . . . 9 (((𝑦 × 𝐵) ∈ Fin ∧ ({𝑧} × 𝐵) ∈ Fin ∧ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
4947, 48mp3an2 1445 . . . . . . . 8 (((𝑦 × 𝐵) ∈ Fin ∧ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
5037, 44, 49syl2an 594 . . . . . . 7 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
51 snex 5436 . . . . . . . . . . 11 {𝑧} ∈ V
5221elexi 3483 . . . . . . . . . . 11 𝐵 ∈ V
5351, 52xpcomen 9100 . . . . . . . . . 10 ({𝑧} × 𝐵) ≈ (𝐵 × {𝑧})
54 vex 3465 . . . . . . . . . . 11 𝑧 ∈ V
5552, 54xpsnen 9092 . . . . . . . . . 10 (𝐵 × {𝑧}) ≈ 𝐵
5653, 55entri 9038 . . . . . . . . 9 ({𝑧} × 𝐵) ≈ 𝐵
57 hashen 14359 . . . . . . . . . 10 ((({𝑧} × 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵))
5847, 21, 57mp2an 690 . . . . . . . . 9 ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵)
5956, 58mpbir 230 . . . . . . . 8 (♯‘({𝑧} × 𝐵)) = (♯‘𝐵)
6059oveq2i 7434 . . . . . . 7 ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵))
6150, 60eqtrdi 2781 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
6235, 61eqtrid 2777 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
6362adantr 479 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
64 hashunsng 14404 . . . . . . . 8 (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
6554, 64ax-mp 5 . . . . . . 7 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
6665oveq1d 7438 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) + 1) · (♯‘𝐵)))
67 hashcl 14368 . . . . . . . . . 10 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
6867nn0cnd 12581 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℂ)
69 ax-1cn 11212 . . . . . . . . . 10 1 ∈ ℂ
70 nn0cn 12529 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
7121, 22, 70mp2b 10 . . . . . . . . . 10 (♯‘𝐵) ∈ ℂ
72 adddir 11251 . . . . . . . . . 10 (((♯‘𝑦) ∈ ℂ ∧ 1 ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7369, 71, 72mp3an23 1449 . . . . . . . . 9 ((♯‘𝑦) ∈ ℂ → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7468, 73syl 17 . . . . . . . 8 (𝑦 ∈ Fin → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7571mullidi 11265 . . . . . . . . 9 (1 · (♯‘𝐵)) = (♯‘𝐵)
7675oveq2i 7434 . . . . . . . 8 (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵))
7774, 76eqtrdi 2781 . . . . . . 7 (𝑦 ∈ Fin → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
7877adantr 479 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
7966, 78eqtrd 2765 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8079adantr 479 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8133, 63, 803eqtr4d 2775 . . 3 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
8281ex 411 . 2 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
835, 10, 15, 20, 31, 82findcard2s 9202 1 (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  cun 3944  cin 3945  c0 4324  {csn 4632   class class class wbr 5152   × cxp 5679  cfv 6553  (class class class)co 7423  cen 8970  Fincfn 8973  cc 11152  0cc0 11154  1c1 11155   + caddc 11157   · cmul 11159  0cn0 12519  chash 14342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-oadd 8499  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-dju 9940  df-card 9978  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-n0 12520  df-z 12606  df-uz 12870  df-fz 13534  df-hash 14343
This theorem is referenced by:  hashxp  14446
  Copyright terms: Public domain W3C validator