MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashxplem Structured version   Visualization version   GIF version

Theorem hashxplem 13797
Description: Lemma for hashxp 13798. (Contributed by Paul Chapman, 30-Nov-2012.)
Hypothesis
Ref Expression
hashxplem.1 𝐵 ∈ Fin
Assertion
Ref Expression
hashxplem (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))

Proof of Theorem hashxplem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5572 . . . 4 (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵))
21fveq2d 6677 . . 3 (𝑥 = ∅ → (♯‘(𝑥 × 𝐵)) = (♯‘(∅ × 𝐵)))
3 fveq2 6673 . . . 4 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
43oveq1d 7174 . . 3 (𝑥 = ∅ → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘∅) · (♯‘𝐵)))
52, 4eqeq12d 2840 . 2 (𝑥 = ∅ → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵))))
6 xpeq1 5572 . . . 4 (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵))
76fveq2d 6677 . . 3 (𝑥 = 𝑦 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝑦 × 𝐵)))
8 fveq2 6673 . . . 4 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
98oveq1d 7174 . . 3 (𝑥 = 𝑦 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝑦) · (♯‘𝐵)))
107, 9eqeq12d 2840 . 2 (𝑥 = 𝑦 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))))
11 xpeq1 5572 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∪ {𝑧}) × 𝐵))
1211fveq2d 6677 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝑥 × 𝐵)) = (♯‘((𝑦 ∪ {𝑧}) × 𝐵)))
13 fveq2 6673 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1413oveq1d 7174 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
1512, 14eqeq12d 2840 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
16 xpeq1 5572 . . . 4 (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵))
1716fveq2d 6677 . . 3 (𝑥 = 𝐴 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝐴 × 𝐵)))
18 fveq2 6673 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
1918oveq1d 7174 . . 3 (𝑥 = 𝐴 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
2017, 19eqeq12d 2840 . 2 (𝑥 = 𝐴 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))))
21 hashxplem.1 . . . 4 𝐵 ∈ Fin
22 hashcl 13720 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
2322nn0cnd 11960 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
2423mul02d 10841 . . . 4 (𝐵 ∈ Fin → (0 · (♯‘𝐵)) = 0)
2521, 24ax-mp 5 . . 3 (0 · (♯‘𝐵)) = 0
26 hash0 13731 . . . 4 (♯‘∅) = 0
2726oveq1i 7169 . . 3 ((♯‘∅) · (♯‘𝐵)) = (0 · (♯‘𝐵))
28 0xp 5652 . . . . 5 (∅ × 𝐵) = ∅
2928fveq2i 6676 . . . 4 (♯‘(∅ × 𝐵)) = (♯‘∅)
3029, 26eqtri 2847 . . 3 (♯‘(∅ × 𝐵)) = 0
3125, 27, 303eqtr4ri 2858 . 2 (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵))
32 oveq1 7166 . . . . 5 ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
3332adantl 484 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
34 xpundir 5624 . . . . . . 7 ((𝑦 ∪ {𝑧}) × 𝐵) = ((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))
3534fveq2i 6676 . . . . . 6 (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵)))
36 xpfi 8792 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)
3721, 36mpan2 689 . . . . . . . 8 (𝑦 ∈ Fin → (𝑦 × 𝐵) ∈ Fin)
38 inxp 5706 . . . . . . . . 9 ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ((𝑦 ∩ {𝑧}) × (𝐵𝐵))
39 disjsn 4650 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4039biimpri 230 . . . . . . . . . . 11 𝑧𝑦 → (𝑦 ∩ {𝑧}) = ∅)
4140xpeq1d 5587 . . . . . . . . . 10 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = (∅ × (𝐵𝐵)))
42 0xp 5652 . . . . . . . . . 10 (∅ × (𝐵𝐵)) = ∅
4341, 42syl6eq 2875 . . . . . . . . 9 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = ∅)
4438, 43syl5eq 2871 . . . . . . . 8 𝑧𝑦 → ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅)
45 snfi 8597 . . . . . . . . . 10 {𝑧} ∈ Fin
46 xpfi 8792 . . . . . . . . . 10 (({𝑧} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑧} × 𝐵) ∈ Fin)
4745, 21, 46mp2an 690 . . . . . . . . 9 ({𝑧} × 𝐵) ∈ Fin
48 hashun 13746 . . . . . . . . 9 (((𝑦 × 𝐵) ∈ Fin ∧ ({𝑧} × 𝐵) ∈ Fin ∧ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
4947, 48mp3an2 1445 . . . . . . . 8 (((𝑦 × 𝐵) ∈ Fin ∧ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
5037, 44, 49syl2an 597 . . . . . . 7 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
51 snex 5335 . . . . . . . . . . 11 {𝑧} ∈ V
5221elexi 3516 . . . . . . . . . . 11 𝐵 ∈ V
5351, 52xpcomen 8611 . . . . . . . . . 10 ({𝑧} × 𝐵) ≈ (𝐵 × {𝑧})
54 vex 3500 . . . . . . . . . . 11 𝑧 ∈ V
5552, 54xpsnen 8604 . . . . . . . . . 10 (𝐵 × {𝑧}) ≈ 𝐵
5653, 55entri 8566 . . . . . . . . 9 ({𝑧} × 𝐵) ≈ 𝐵
57 hashen 13710 . . . . . . . . . 10 ((({𝑧} × 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵))
5847, 21, 57mp2an 690 . . . . . . . . 9 ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵)
5956, 58mpbir 233 . . . . . . . 8 (♯‘({𝑧} × 𝐵)) = (♯‘𝐵)
6059oveq2i 7170 . . . . . . 7 ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵))
6150, 60syl6eq 2875 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
6235, 61syl5eq 2871 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
6362adantr 483 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
64 hashunsng 13756 . . . . . . . 8 (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
6554, 64ax-mp 5 . . . . . . 7 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
6665oveq1d 7174 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) + 1) · (♯‘𝐵)))
67 hashcl 13720 . . . . . . . . . 10 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
6867nn0cnd 11960 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℂ)
69 ax-1cn 10598 . . . . . . . . . 10 1 ∈ ℂ
70 nn0cn 11910 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
7121, 22, 70mp2b 10 . . . . . . . . . 10 (♯‘𝐵) ∈ ℂ
72 adddir 10635 . . . . . . . . . 10 (((♯‘𝑦) ∈ ℂ ∧ 1 ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7369, 71, 72mp3an23 1449 . . . . . . . . 9 ((♯‘𝑦) ∈ ℂ → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7468, 73syl 17 . . . . . . . 8 (𝑦 ∈ Fin → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7571mulid2i 10649 . . . . . . . . 9 (1 · (♯‘𝐵)) = (♯‘𝐵)
7675oveq2i 7170 . . . . . . . 8 (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵))
7774, 76syl6eq 2875 . . . . . . 7 (𝑦 ∈ Fin → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
7877adantr 483 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
7966, 78eqtrd 2859 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8079adantr 483 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8133, 63, 803eqtr4d 2869 . . 3 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
8281ex 415 . 2 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
835, 10, 15, 20, 31, 82findcard2s 8762 1 (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  cun 3937  cin 3938  c0 4294  {csn 4570   class class class wbr 5069   × cxp 5556  cfv 6358  (class class class)co 7159  cen 8509  Fincfn 8512  cc 10538  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  0cn0 11900  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694
This theorem is referenced by:  hashxp  13798
  Copyright terms: Public domain W3C validator