MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashxplem Structured version   Visualization version   GIF version

Theorem hashxplem 14333
Description: Lemma for hashxp 14334. (Contributed by Paul Chapman, 30-Nov-2012.)
Hypothesis
Ref Expression
hashxplem.1 𝐵 ∈ Fin
Assertion
Ref Expression
hashxplem (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))

Proof of Theorem hashxplem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5647 . . . 4 (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵))
21fveq2d 6846 . . 3 (𝑥 = ∅ → (♯‘(𝑥 × 𝐵)) = (♯‘(∅ × 𝐵)))
3 fveq2 6842 . . . 4 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
43oveq1d 7372 . . 3 (𝑥 = ∅ → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘∅) · (♯‘𝐵)))
52, 4eqeq12d 2752 . 2 (𝑥 = ∅ → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵))))
6 xpeq1 5647 . . . 4 (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵))
76fveq2d 6846 . . 3 (𝑥 = 𝑦 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝑦 × 𝐵)))
8 fveq2 6842 . . . 4 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
98oveq1d 7372 . . 3 (𝑥 = 𝑦 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝑦) · (♯‘𝐵)))
107, 9eqeq12d 2752 . 2 (𝑥 = 𝑦 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))))
11 xpeq1 5647 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∪ {𝑧}) × 𝐵))
1211fveq2d 6846 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝑥 × 𝐵)) = (♯‘((𝑦 ∪ {𝑧}) × 𝐵)))
13 fveq2 6842 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1413oveq1d 7372 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
1512, 14eqeq12d 2752 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
16 xpeq1 5647 . . . 4 (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵))
1716fveq2d 6846 . . 3 (𝑥 = 𝐴 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝐴 × 𝐵)))
18 fveq2 6842 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
1918oveq1d 7372 . . 3 (𝑥 = 𝐴 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
2017, 19eqeq12d 2752 . 2 (𝑥 = 𝐴 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))))
21 hashxplem.1 . . . 4 𝐵 ∈ Fin
22 hashcl 14256 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
2322nn0cnd 12475 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
2423mul02d 11353 . . . 4 (𝐵 ∈ Fin → (0 · (♯‘𝐵)) = 0)
2521, 24ax-mp 5 . . 3 (0 · (♯‘𝐵)) = 0
26 hash0 14267 . . . 4 (♯‘∅) = 0
2726oveq1i 7367 . . 3 ((♯‘∅) · (♯‘𝐵)) = (0 · (♯‘𝐵))
28 0xp 5730 . . . . 5 (∅ × 𝐵) = ∅
2928fveq2i 6845 . . . 4 (♯‘(∅ × 𝐵)) = (♯‘∅)
3029, 26eqtri 2764 . . 3 (♯‘(∅ × 𝐵)) = 0
3125, 27, 303eqtr4ri 2775 . 2 (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵))
32 oveq1 7364 . . . . 5 ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
3332adantl 482 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
34 xpundir 5701 . . . . . . 7 ((𝑦 ∪ {𝑧}) × 𝐵) = ((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))
3534fveq2i 6845 . . . . . 6 (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵)))
36 xpfi 9261 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)
3721, 36mpan2 689 . . . . . . . 8 (𝑦 ∈ Fin → (𝑦 × 𝐵) ∈ Fin)
38 inxp 5788 . . . . . . . . 9 ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ((𝑦 ∩ {𝑧}) × (𝐵𝐵))
39 disjsn 4672 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4039biimpri 227 . . . . . . . . . . 11 𝑧𝑦 → (𝑦 ∩ {𝑧}) = ∅)
4140xpeq1d 5662 . . . . . . . . . 10 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = (∅ × (𝐵𝐵)))
42 0xp 5730 . . . . . . . . . 10 (∅ × (𝐵𝐵)) = ∅
4341, 42eqtrdi 2792 . . . . . . . . 9 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = ∅)
4438, 43eqtrid 2788 . . . . . . . 8 𝑧𝑦 → ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅)
45 snfi 8988 . . . . . . . . . 10 {𝑧} ∈ Fin
46 xpfi 9261 . . . . . . . . . 10 (({𝑧} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑧} × 𝐵) ∈ Fin)
4745, 21, 46mp2an 690 . . . . . . . . 9 ({𝑧} × 𝐵) ∈ Fin
48 hashun 14282 . . . . . . . . 9 (((𝑦 × 𝐵) ∈ Fin ∧ ({𝑧} × 𝐵) ∈ Fin ∧ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
4947, 48mp3an2 1449 . . . . . . . 8 (((𝑦 × 𝐵) ∈ Fin ∧ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
5037, 44, 49syl2an 596 . . . . . . 7 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
51 snex 5388 . . . . . . . . . . 11 {𝑧} ∈ V
5221elexi 3464 . . . . . . . . . . 11 𝐵 ∈ V
5351, 52xpcomen 9007 . . . . . . . . . 10 ({𝑧} × 𝐵) ≈ (𝐵 × {𝑧})
54 vex 3449 . . . . . . . . . . 11 𝑧 ∈ V
5552, 54xpsnen 8999 . . . . . . . . . 10 (𝐵 × {𝑧}) ≈ 𝐵
5653, 55entri 8948 . . . . . . . . 9 ({𝑧} × 𝐵) ≈ 𝐵
57 hashen 14247 . . . . . . . . . 10 ((({𝑧} × 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵))
5847, 21, 57mp2an 690 . . . . . . . . 9 ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵)
5956, 58mpbir 230 . . . . . . . 8 (♯‘({𝑧} × 𝐵)) = (♯‘𝐵)
6059oveq2i 7368 . . . . . . 7 ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵))
6150, 60eqtrdi 2792 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
6235, 61eqtrid 2788 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
6362adantr 481 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
64 hashunsng 14292 . . . . . . . 8 (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
6554, 64ax-mp 5 . . . . . . 7 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
6665oveq1d 7372 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) + 1) · (♯‘𝐵)))
67 hashcl 14256 . . . . . . . . . 10 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
6867nn0cnd 12475 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℂ)
69 ax-1cn 11109 . . . . . . . . . 10 1 ∈ ℂ
70 nn0cn 12423 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
7121, 22, 70mp2b 10 . . . . . . . . . 10 (♯‘𝐵) ∈ ℂ
72 adddir 11146 . . . . . . . . . 10 (((♯‘𝑦) ∈ ℂ ∧ 1 ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7369, 71, 72mp3an23 1453 . . . . . . . . 9 ((♯‘𝑦) ∈ ℂ → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7468, 73syl 17 . . . . . . . 8 (𝑦 ∈ Fin → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7571mulid2i 11160 . . . . . . . . 9 (1 · (♯‘𝐵)) = (♯‘𝐵)
7675oveq2i 7368 . . . . . . . 8 (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵))
7774, 76eqtrdi 2792 . . . . . . 7 (𝑦 ∈ Fin → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
7877adantr 481 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
7966, 78eqtrd 2776 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8079adantr 481 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8133, 63, 803eqtr4d 2786 . . 3 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
8281ex 413 . 2 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
835, 10, 15, 20, 31, 82findcard2s 9109 1 (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cun 3908  cin 3909  c0 4282  {csn 4586   class class class wbr 5105   × cxp 5631  cfv 6496  (class class class)co 7357  cen 8880  Fincfn 8883  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  0cn0 12413  chash 14230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231
This theorem is referenced by:  hashxp  14334
  Copyright terms: Public domain W3C validator