MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpfiOLD Structured version   Visualization version   GIF version

Theorem xpfiOLD 9359
Description: Obsolete version of xpfi 9358 as of 10-Jan-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xpfiOLD ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin)

Proof of Theorem xpfiOLD
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5699 . . . . 5 (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵))
21eleq1d 2826 . . . 4 (𝑥 = ∅ → ((𝑥 × 𝐵) ∈ Fin ↔ (∅ × 𝐵) ∈ Fin))
32imbi2d 340 . . 3 (𝑥 = ∅ → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (∅ × 𝐵) ∈ Fin)))
4 xpeq1 5699 . . . . 5 (𝑥 = (𝑦 ∖ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∖ {𝑧}) × 𝐵))
54eleq1d 2826 . . . 4 (𝑥 = (𝑦 ∖ {𝑧}) → ((𝑥 × 𝐵) ∈ Fin ↔ ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin))
65imbi2d 340 . . 3 (𝑥 = (𝑦 ∖ {𝑧}) → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin)))
7 xpeq1 5699 . . . . 5 (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵))
87eleq1d 2826 . . . 4 (𝑥 = 𝑦 → ((𝑥 × 𝐵) ∈ Fin ↔ (𝑦 × 𝐵) ∈ Fin))
98imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (𝑦 × 𝐵) ∈ Fin)))
10 xpeq1 5699 . . . . 5 (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵))
1110eleq1d 2826 . . . 4 (𝑥 = 𝐴 → ((𝑥 × 𝐵) ∈ Fin ↔ (𝐴 × 𝐵) ∈ Fin))
1211imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (𝐴 × 𝐵) ∈ Fin)))
13 0xp 5784 . . . . 5 (∅ × 𝐵) = ∅
14 0fi 9082 . . . . 5 ∅ ∈ Fin
1513, 14eqeltri 2837 . . . 4 (∅ × 𝐵) ∈ Fin
1615a1i 11 . . 3 (𝐵 ∈ Fin → (∅ × 𝐵) ∈ Fin)
17 neq0 4352 . . . . . . 7 𝑦 = ∅ ↔ ∃𝑤 𝑤𝑦)
18 sneq 4636 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → {𝑧} = {𝑤})
1918difeq2d 4126 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑦 ∖ {𝑧}) = (𝑦 ∖ {𝑤}))
2019xpeq1d 5714 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((𝑦 ∖ {𝑧}) × 𝐵) = ((𝑦 ∖ {𝑤}) × 𝐵))
2120eleq1d 2826 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin ↔ ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))
2221imbi2d 340 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)))
2322rspcv 3618 . . . . . . . . . . 11 (𝑤𝑦 → (∀𝑧𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)))
2423adantl 481 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤𝑦) → (∀𝑧𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)))
25 pm2.27 42 . . . . . . . . . . 11 (𝐵 ∈ Fin → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin) → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))
2625ad2antlr 727 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤𝑦) → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin) → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))
27 snex 5436 . . . . . . . . . . . . . . 15 {𝑤} ∈ V
28 xpexg 7770 . . . . . . . . . . . . . . 15 (({𝑤} ∈ V ∧ 𝐵 ∈ Fin) → ({𝑤} × 𝐵) ∈ V)
2927, 28mpan 690 . . . . . . . . . . . . . 14 (𝐵 ∈ Fin → ({𝑤} × 𝐵) ∈ V)
30 id 22 . . . . . . . . . . . . . 14 (𝐵 ∈ Fin → 𝐵 ∈ Fin)
31 vex 3484 . . . . . . . . . . . . . . 15 𝑤 ∈ V
32 2ndconst 8126 . . . . . . . . . . . . . . 15 (𝑤 ∈ V → (2nd ↾ ({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto𝐵)
3331, 32mp1i 13 . . . . . . . . . . . . . 14 (𝐵 ∈ Fin → (2nd ↾ ({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto𝐵)
34 f1oen2g 9009 . . . . . . . . . . . . . 14 ((({𝑤} × 𝐵) ∈ V ∧ 𝐵 ∈ Fin ∧ (2nd ↾ ({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto𝐵) → ({𝑤} × 𝐵) ≈ 𝐵)
3529, 30, 33, 34syl3anc 1373 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → ({𝑤} × 𝐵) ≈ 𝐵)
36 enfii 9226 . . . . . . . . . . . . 13 ((𝐵 ∈ Fin ∧ ({𝑤} × 𝐵) ≈ 𝐵) → ({𝑤} × 𝐵) ∈ Fin)
3735, 36mpdan 687 . . . . . . . . . . . 12 (𝐵 ∈ Fin → ({𝑤} × 𝐵) ∈ Fin)
3837ad2antlr 727 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤𝑦) → ({𝑤} × 𝐵) ∈ Fin)
39 unfi 9211 . . . . . . . . . . . 12 ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin) → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin)
40 xpundir 5755 . . . . . . . . . . . . . . . 16 (((𝑦 ∖ {𝑤}) ∪ {𝑤}) × 𝐵) = (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵))
41 difsnid 4810 . . . . . . . . . . . . . . . . 17 (𝑤𝑦 → ((𝑦 ∖ {𝑤}) ∪ {𝑤}) = 𝑦)
4241xpeq1d 5714 . . . . . . . . . . . . . . . 16 (𝑤𝑦 → (((𝑦 ∖ {𝑤}) ∪ {𝑤}) × 𝐵) = (𝑦 × 𝐵))
4340, 42eqtr3id 2791 . . . . . . . . . . . . . . 15 (𝑤𝑦 → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) = (𝑦 × 𝐵))
4443eleq1d 2826 . . . . . . . . . . . . . 14 (𝑤𝑦 → ((((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin ↔ (𝑦 × 𝐵) ∈ Fin))
4544biimpd 229 . . . . . . . . . . . . 13 (𝑤𝑦 → ((((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin → (𝑦 × 𝐵) ∈ Fin))
4645adantl 481 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤𝑦) → ((((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin → (𝑦 × 𝐵) ∈ Fin))
4739, 46syl5 34 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤𝑦) → ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))
4838, 47mpan2d 694 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤𝑦) → (((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin → (𝑦 × 𝐵) ∈ Fin))
4924, 26, 483syld 60 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤𝑦) → (∀𝑧𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))
5049ex 412 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑤𝑦 → (∀𝑧𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)))
5150exlimdv 1933 . . . . . . 7 ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑤 𝑤𝑦 → (∀𝑧𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)))
5217, 51biimtrid 242 . . . . . 6 ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (¬ 𝑦 = ∅ → (∀𝑧𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)))
53 xpeq1 5699 . . . . . . . 8 (𝑦 = ∅ → (𝑦 × 𝐵) = (∅ × 𝐵))
5453, 15eqeltrdi 2849 . . . . . . 7 (𝑦 = ∅ → (𝑦 × 𝐵) ∈ Fin)
5554a1d 25 . . . . . 6 (𝑦 = ∅ → (∀𝑧𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))
5652, 55pm2.61d2 181 . . . . 5 ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (∀𝑧𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))
5756ex 412 . . . 4 (𝑦 ∈ Fin → (𝐵 ∈ Fin → (∀𝑧𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)))
5857com23 86 . . 3 (𝑦 ∈ Fin → (∀𝑧𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → (𝑦 × 𝐵) ∈ Fin)))
593, 6, 9, 12, 16, 58findcard 9203 . 2 (𝐴 ∈ Fin → (𝐵 ∈ Fin → (𝐴 × 𝐵) ∈ Fin))
6059imp 406 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  Vcvv 3480  cdif 3948  cun 3949  c0 4333  {csn 4626   class class class wbr 5143   × cxp 5683  cres 5687  1-1-ontowf1o 6560  2nd c2nd 8013  cen 8982  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1st 8014  df-2nd 8015  df-1o 8506  df-en 8986  df-fin 8989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator