| Step | Hyp | Ref
| Expression |
| 1 | | xpeq1 5699 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵)) |
| 2 | 1 | eleq1d 2826 |
. . . 4
⊢ (𝑥 = ∅ → ((𝑥 × 𝐵) ∈ Fin ↔ (∅ × 𝐵) ∈ Fin)) |
| 3 | 2 | imbi2d 340 |
. . 3
⊢ (𝑥 = ∅ → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (∅ × 𝐵) ∈ Fin))) |
| 4 | | xpeq1 5699 |
. . . . 5
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∖ {𝑧}) × 𝐵)) |
| 5 | 4 | eleq1d 2826 |
. . . 4
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → ((𝑥 × 𝐵) ∈ Fin ↔ ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin)) |
| 6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin))) |
| 7 | | xpeq1 5699 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵)) |
| 8 | 7 | eleq1d 2826 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 × 𝐵) ∈ Fin ↔ (𝑦 × 𝐵) ∈ Fin)) |
| 9 | 8 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (𝑦 × 𝐵) ∈ Fin))) |
| 10 | | xpeq1 5699 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵)) |
| 11 | 10 | eleq1d 2826 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 × 𝐵) ∈ Fin ↔ (𝐴 × 𝐵) ∈ Fin)) |
| 12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (𝐴 × 𝐵) ∈ Fin))) |
| 13 | | 0xp 5784 |
. . . . 5
⊢ (∅
× 𝐵) =
∅ |
| 14 | | 0fi 9082 |
. . . . 5
⊢ ∅
∈ Fin |
| 15 | 13, 14 | eqeltri 2837 |
. . . 4
⊢ (∅
× 𝐵) ∈
Fin |
| 16 | 15 | a1i 11 |
. . 3
⊢ (𝐵 ∈ Fin → (∅
× 𝐵) ∈
Fin) |
| 17 | | neq0 4352 |
. . . . . . 7
⊢ (¬
𝑦 = ∅ ↔
∃𝑤 𝑤 ∈ 𝑦) |
| 18 | | sneq 4636 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑤 → {𝑧} = {𝑤}) |
| 19 | 18 | difeq2d 4126 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑤 → (𝑦 ∖ {𝑧}) = (𝑦 ∖ {𝑤})) |
| 20 | 19 | xpeq1d 5714 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → ((𝑦 ∖ {𝑧}) × 𝐵) = ((𝑦 ∖ {𝑤}) × 𝐵)) |
| 21 | 20 | eleq1d 2826 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin ↔ ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) |
| 22 | 21 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) |
| 23 | 22 | rspcv 3618 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) |
| 24 | 23 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) |
| 25 | | pm2.27 42 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ Fin → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin) → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) |
| 26 | 25 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin) → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) |
| 27 | | snex 5436 |
. . . . . . . . . . . . . . 15
⊢ {𝑤} ∈ V |
| 28 | | xpexg 7770 |
. . . . . . . . . . . . . . 15
⊢ (({𝑤} ∈ V ∧ 𝐵 ∈ Fin) → ({𝑤} × 𝐵) ∈ V) |
| 29 | 27, 28 | mpan 690 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ∈ V) |
| 30 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ Fin → 𝐵 ∈ Fin) |
| 31 | | vex 3484 |
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V |
| 32 | | 2ndconst 8126 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ V → (2nd
↾ ({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) |
| 33 | 31, 32 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ Fin →
(2nd ↾ ({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) |
| 34 | | f1oen2g 9009 |
. . . . . . . . . . . . . 14
⊢ ((({𝑤} × 𝐵) ∈ V ∧ 𝐵 ∈ Fin ∧ (2nd ↾
({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) → ({𝑤} × 𝐵) ≈ 𝐵) |
| 35 | 29, 30, 33, 34 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ≈ 𝐵) |
| 36 | | enfii 9226 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ Fin ∧ ({𝑤} × 𝐵) ≈ 𝐵) → ({𝑤} × 𝐵) ∈ Fin) |
| 37 | 35, 36 | mpdan 687 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ∈ Fin) |
| 38 | 37 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ({𝑤} × 𝐵) ∈ Fin) |
| 39 | | unfi 9211 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin) → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin) |
| 40 | | xpundir 5755 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∖ {𝑤}) ∪ {𝑤}) × 𝐵) = (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) |
| 41 | | difsnid 4810 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ 𝑦 → ((𝑦 ∖ {𝑤}) ∪ {𝑤}) = 𝑦) |
| 42 | 41 | xpeq1d 5714 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ 𝑦 → (((𝑦 ∖ {𝑤}) ∪ {𝑤}) × 𝐵) = (𝑦 × 𝐵)) |
| 43 | 40, 42 | eqtr3id 2791 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝑦 → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) = (𝑦 × 𝐵)) |
| 44 | 43 | eleq1d 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ 𝑦 → ((((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin ↔ (𝑦 × 𝐵) ∈ Fin)) |
| 45 | 44 | biimpd 229 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ 𝑦 → ((((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin → (𝑦 × 𝐵) ∈ Fin)) |
| 46 | 45 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin → (𝑦 × 𝐵) ∈ Fin)) |
| 47 | 39, 46 | syl5 34 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) |
| 48 | 38, 47 | mpan2d 694 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin → (𝑦 × 𝐵) ∈ Fin)) |
| 49 | 24, 26, 48 | 3syld 60 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) |
| 50 | 49 | ex 412 |
. . . . . . . 8
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
| 51 | 50 | exlimdv 1933 |
. . . . . . 7
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) →
(∃𝑤 𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
| 52 | 17, 51 | biimtrid 242 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (¬ 𝑦 = ∅ → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
| 53 | | xpeq1 5699 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝑦 × 𝐵) = (∅ × 𝐵)) |
| 54 | 53, 15 | eqeltrdi 2849 |
. . . . . . 7
⊢ (𝑦 = ∅ → (𝑦 × 𝐵) ∈ Fin) |
| 55 | 54 | a1d 25 |
. . . . . 6
⊢ (𝑦 = ∅ → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) |
| 56 | 52, 55 | pm2.61d2 181 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) |
| 57 | 56 | ex 412 |
. . . 4
⊢ (𝑦 ∈ Fin → (𝐵 ∈ Fin →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
| 58 | 57 | com23 86 |
. . 3
⊢ (𝑦 ∈ Fin →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → (𝑦 × 𝐵) ∈ Fin))) |
| 59 | 3, 6, 9, 12, 16, 58 | findcard 9203 |
. 2
⊢ (𝐴 ∈ Fin → (𝐵 ∈ Fin → (𝐴 × 𝐵) ∈ Fin)) |
| 60 | 59 | imp 406 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |