| Step | Hyp | Ref
| Expression |
| 1 | | naddcl 8715 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On) |
| 2 | 1 | 3adant3 1133 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐵) ∈ On) |
| 3 | | simp3 1139 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On) |
| 4 | | naddov3 8718 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ∩ {𝑎 ∈ On ∣ (( +no
“ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) ⊆ 𝑎}) |
| 5 | 4 | 3adant3 1133 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐵) = ∩ {𝑎 ∈ On ∣ (( +no
“ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) ⊆ 𝑎}) |
| 6 | | intmin 4968 |
. . . . 5
⊢ (𝐶 ∈ On → ∩ {𝑐
∈ On ∣ 𝐶 ⊆
𝑐} = 𝐶) |
| 7 | 6 | eqcomd 2743 |
. . . 4
⊢ (𝐶 ∈ On → 𝐶 = ∩
{𝑐 ∈ On ∣ 𝐶 ⊆ 𝑐}) |
| 8 | 7 | 3ad2ant3 1136 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 = ∩
{𝑐 ∈ On ∣ 𝐶 ⊆ 𝑐}) |
| 9 | 2, 3, 5, 8 | naddunif 8731 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ∩ {𝑥 ∈ On ∣ (( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥}) |
| 10 | | df-3an 1089 |
. . . . . 6
⊢ ((( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no
“ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ ((( +no “ (( +no “
(𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥)) |
| 11 | | unss 4190 |
. . . . . . . 8
⊢ ((( +no
“ (( +no “ ({𝐴}
× 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥) ↔ (( +no “ (( +no “
({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “
(𝐴 × {𝐵})) × {𝐶}))) ⊆ 𝑥) |
| 12 | | ancom 460 |
. . . . . . . 8
⊢ ((( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no
“ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ↔ (( +no “ (( +no “
({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥)) |
| 13 | | xpundir 5755 |
. . . . . . . . . . 11
⊢ ((( +no
“ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶}) = ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶})) |
| 14 | 13 | imaeq2i 6076 |
. . . . . . . . . 10
⊢ ( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) = ( +no “ ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶}))) |
| 15 | | imaundi 6169 |
. . . . . . . . . 10
⊢ ( +no
“ ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶}))) = (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “
(𝐴 × {𝐵})) × {𝐶}))) |
| 16 | 14, 15 | eqtri 2765 |
. . . . . . . . 9
⊢ ( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) = (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “
(𝐴 × {𝐵})) × {𝐶}))) |
| 17 | 16 | sseq1i 4012 |
. . . . . . . 8
⊢ (( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ↔ (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “
(𝐴 × {𝐵})) × {𝐶}))) ⊆ 𝑥) |
| 18 | 11, 12, 17 | 3bitr4i 303 |
. . . . . . 7
⊢ ((( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no
“ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ↔ ( +no “ ((( +no “
({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥) |
| 19 | 18 | anbi1i 624 |
. . . . . 6
⊢ (((( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no
“ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (( +no “ ((( +no “
({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥)) |
| 20 | | unss 4190 |
. . . . . 6
⊢ ((( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (( +no “ ((( +no “
({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥) |
| 21 | 10, 19, 20 | 3bitrri 298 |
. . . . 5
⊢ ((( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥 ↔ (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥)) |
| 22 | | naddfn 8713 |
. . . . . . . . 9
⊢ +no Fn
(On × On) |
| 23 | | fnfun 6668 |
. . . . . . . . 9
⊢ ( +no Fn
(On × On) → Fun +no ) |
| 24 | 22, 23 | ax-mp 5 |
. . . . . . . 8
⊢ Fun
+no |
| 25 | | imassrn 6089 |
. . . . . . . . . . 11
⊢ ( +no
“ (𝐴 × {𝐵})) ⊆ ran
+no |
| 26 | | naddf 8719 |
. . . . . . . . . . . 12
⊢ +no :(On
× On)⟶On |
| 27 | | frn 6743 |
. . . . . . . . . . . 12
⊢ ( +no
:(On × On)⟶On → ran +no ⊆ On) |
| 28 | 26, 27 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ran +no
⊆ On |
| 29 | 25, 28 | sstri 3993 |
. . . . . . . . . 10
⊢ ( +no
“ (𝐴 × {𝐵})) ⊆ On |
| 30 | | simpl3 1194 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ∈ On) |
| 31 | 30 | snssd 4809 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐶} ⊆ On) |
| 32 | | xpss12 5700 |
. . . . . . . . . 10
⊢ ((( +no
“ (𝐴 × {𝐵})) ⊆ On ∧ {𝐶} ⊆ On) → (( +no
“ (𝐴 × {𝐵})) × {𝐶}) ⊆ (On × On)) |
| 33 | 29, 31, 32 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (𝐴 × {𝐵})) × {𝐶}) ⊆ (On × On)) |
| 34 | 22 | fndmi 6672 |
. . . . . . . . 9
⊢ dom +no =
(On × On) |
| 35 | 33, 34 | sseqtrrdi 4025 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (𝐴 × {𝐵})) × {𝐶}) ⊆ dom +no ) |
| 36 | | funimassov 7610 |
. . . . . . . 8
⊢ ((Fun +no
∧ (( +no “ (𝐴
× {𝐵})) ×
{𝐶}) ⊆ dom +no )
→ (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥)) |
| 37 | 24, 35, 36 | sylancr 587 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥)) |
| 38 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝐶 → (𝑝 +no 𝑐) = (𝑝 +no 𝐶)) |
| 39 | 38 | eleq1d 2826 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 → ((𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥)) |
| 40 | 39 | ralsng 4675 |
. . . . . . . . 9
⊢ (𝐶 ∈ On → (∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥)) |
| 41 | 30, 40 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥)) |
| 42 | 41 | ralbidv 3178 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥)) |
| 43 | | onss 7805 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| 44 | 43 | 3ad2ant1 1134 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On) |
| 45 | 44 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ⊆ On) |
| 46 | | simpl2 1193 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐵 ∈ On) |
| 47 | 46 | snssd 4809 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐵} ⊆ On) |
| 48 | | xpss12 5700 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ {𝐵} ⊆ On) → (𝐴 × {𝐵}) ⊆ (On × On)) |
| 49 | 45, 47, 48 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 × {𝐵}) ⊆ (On × On)) |
| 50 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑝 = (𝑎 +no 𝑏) → (𝑝 +no 𝐶) = ((𝑎 +no 𝑏) +no 𝐶)) |
| 51 | 50 | eleq1d 2826 |
. . . . . . . . . 10
⊢ (𝑝 = (𝑎 +no 𝑏) → ((𝑝 +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
| 52 | 51 | imaeqalov 7672 |
. . . . . . . . 9
⊢ (( +no Fn
(On × On) ∧ (𝐴
× {𝐵}) ⊆ (On
× On)) → (∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
| 53 | 22, 49, 52 | sylancr 587 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
| 54 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝐵 → (𝑎 +no 𝑏) = (𝑎 +no 𝐵)) |
| 55 | 54 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝐵 → ((𝑎 +no 𝑏) +no 𝐶) = ((𝑎 +no 𝐵) +no 𝐶)) |
| 56 | 55 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝐵 → (((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
| 57 | 56 | ralsng 4675 |
. . . . . . . . . 10
⊢ (𝐵 ∈ On → (∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
| 58 | 46, 57 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
| 59 | 58 | ralbidv 3178 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑎 ∈ 𝐴 ∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
| 60 | 53, 59 | bitrd 279 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
| 61 | 37, 42, 60 | 3bitrd 305 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
| 62 | | imassrn 6089 |
. . . . . . . . . . 11
⊢ ( +no
“ ({𝐴} × 𝐵)) ⊆ ran
+no |
| 63 | 62, 28 | sstri 3993 |
. . . . . . . . . 10
⊢ ( +no
“ ({𝐴} × 𝐵)) ⊆ On |
| 64 | | xpss12 5700 |
. . . . . . . . . 10
⊢ ((( +no
“ ({𝐴} × 𝐵)) ⊆ On ∧ {𝐶} ⊆ On) → (( +no
“ ({𝐴} × 𝐵)) × {𝐶}) ⊆ (On × On)) |
| 65 | 63, 31, 64 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({𝐴} × 𝐵)) × {𝐶}) ⊆ (On × On)) |
| 66 | 65, 34 | sseqtrrdi 4025 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({𝐴} × 𝐵)) × {𝐶}) ⊆ dom +no ) |
| 67 | | funimassov 7610 |
. . . . . . . 8
⊢ ((Fun +no
∧ (( +no “ ({𝐴}
× 𝐵)) × {𝐶}) ⊆ dom +no ) → ((
+no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥)) |
| 68 | 24, 66, 67 | sylancr 587 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (( +no “ ({𝐴}
× 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥)) |
| 69 | 41 | ralbidv 3178 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥)) |
| 70 | | simpl1 1192 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ∈ On) |
| 71 | 70 | snssd 4809 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐴} ⊆ On) |
| 72 | | onss 7805 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
| 73 | 72 | 3ad2ant2 1135 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐵 ⊆ On) |
| 74 | 73 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐵 ⊆ On) |
| 75 | | xpss12 5700 |
. . . . . . . . . 10
⊢ (({𝐴} ⊆ On ∧ 𝐵 ⊆ On) → ({𝐴} × 𝐵) ⊆ (On × On)) |
| 76 | 71, 74, 75 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × 𝐵) ⊆ (On × On)) |
| 77 | 51 | imaeqalov 7672 |
. . . . . . . . 9
⊢ (( +no Fn
(On × On) ∧ ({𝐴}
× 𝐵) ⊆ (On
× On)) → (∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑏 ∈ 𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
| 78 | 22, 76, 77 | sylancr 587 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑏 ∈ 𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
| 79 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏)) |
| 80 | 79 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → ((𝑎 +no 𝑏) +no 𝐶) = ((𝐴 +no 𝑏) +no 𝐶)) |
| 81 | 80 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
| 82 | 81 | ralbidv 3178 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (∀𝑏 ∈ 𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
| 83 | 82 | ralsng 4675 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → (∀𝑎 ∈ {𝐴}∀𝑏 ∈ 𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
| 84 | 70, 83 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑎 ∈ {𝐴}∀𝑏 ∈ 𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
| 85 | 78, 84 | bitrd 279 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
| 86 | 68, 69, 85 | 3bitrd 305 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (( +no “ ({𝐴}
× 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
| 87 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 +no 𝐵) ∈ On) |
| 88 | 87 | snssd 4809 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {(𝐴 +no 𝐵)} ⊆ On) |
| 89 | | onss 7805 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ On → 𝐶 ⊆ On) |
| 90 | 89 | 3ad2ant3 1136 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ⊆ On) |
| 91 | 90 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ⊆ On) |
| 92 | | xpss12 5700 |
. . . . . . . . . 10
⊢ (({(𝐴 +no 𝐵)} ⊆ On ∧ 𝐶 ⊆ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ (On × On)) |
| 93 | 88, 91, 92 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ (On × On)) |
| 94 | 93, 34 | sseqtrrdi 4025 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ dom +no ) |
| 95 | | funimassov 7610 |
. . . . . . . 8
⊢ ((Fun +no
∧ ({(𝐴 +no 𝐵)} × 𝐶) ⊆ dom +no ) → (( +no “
({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑎 ∈ {(𝐴 +no 𝐵)}∀𝑐 ∈ 𝐶 (𝑎 +no 𝑐) ∈ 𝑥)) |
| 96 | 24, 94, 95 | sylancr 587 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑎 ∈ {(𝐴 +no 𝐵)}∀𝑐 ∈ 𝐶 (𝑎 +no 𝑐) ∈ 𝑥)) |
| 97 | | ovex 7464 |
. . . . . . . 8
⊢ (𝐴 +no 𝐵) ∈ V |
| 98 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐴 +no 𝐵) → (𝑎 +no 𝑐) = ((𝐴 +no 𝐵) +no 𝑐)) |
| 99 | 98 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑎 = (𝐴 +no 𝐵) → ((𝑎 +no 𝑐) ∈ 𝑥 ↔ ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)) |
| 100 | 99 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑎 = (𝐴 +no 𝐵) → (∀𝑐 ∈ 𝐶 (𝑎 +no 𝑐) ∈ 𝑥 ↔ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)) |
| 101 | 97, 100 | ralsn 4681 |
. . . . . . 7
⊢
(∀𝑎 ∈
{(𝐴 +no 𝐵)}∀𝑐 ∈ 𝐶 (𝑎 +no 𝑐) ∈ 𝑥 ↔ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥) |
| 102 | 96, 101 | bitrdi 287 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)) |
| 103 | 61, 86, 102 | 3anbi123d 1438 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no
“ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥))) |
| 104 | 21, 103 | bitrid 283 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥 ↔ (∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥))) |
| 105 | 104 | rabbidva 3443 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ On ∣ (( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥} = {𝑥 ∈ On ∣ (∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)}) |
| 106 | 105 | inteqd 4951 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ∩ {𝑥
∈ On ∣ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥} = ∩ {𝑥 ∈ On ∣
(∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)}) |
| 107 | 9, 106 | eqtrd 2777 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ∩ {𝑥 ∈ On ∣
(∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)}) |