MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddasslem1 Structured version   Visualization version   GIF version

Theorem naddasslem1 8724
Description: Lemma for naddass 8726. Expand out the expression for natural addition of three arguments. (Contributed by Scott Fenton, 20-Jan-2025.)
Assertion
Ref Expression
naddasslem1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = {𝑥 ∈ On ∣ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑥   𝐵,𝑎,𝑏,𝑐,𝑥   𝐶,𝑎,𝑏,𝑐,𝑥

Proof of Theorem naddasslem1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 naddcl 8707 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On)
213adant3 1129 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐵) ∈ On)
3 simp3 1135 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On)
4 naddov3 8710 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑎 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) ⊆ 𝑎})
543adant3 1129 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐵) = {𝑎 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) ⊆ 𝑎})
6 intmin 4976 . . . . 5 (𝐶 ∈ On → {𝑐 ∈ On ∣ 𝐶𝑐} = 𝐶)
76eqcomd 2732 . . . 4 (𝐶 ∈ On → 𝐶 = {𝑐 ∈ On ∣ 𝐶𝑐})
873ad2ant3 1132 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 = {𝑐 ∈ On ∣ 𝐶𝑐})
92, 3, 5, 8naddunif 8723 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = {𝑥 ∈ On ∣ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥})
10 df-3an 1086 . . . . . 6 ((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ ((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥))
11 unss 4185 . . . . . . . 8 ((( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥) ↔ (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶}))) ⊆ 𝑥)
12 ancom 459 . . . . . . . 8 ((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ↔ (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥))
13 xpundir 5751 . . . . . . . . . . 11 ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶}) = ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶}))
1413imaeq2i 6067 . . . . . . . . . 10 ( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) = ( +no “ ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶})))
15 imaundi 6161 . . . . . . . . . 10 ( +no “ ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶}))) = (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})))
1614, 15eqtri 2754 . . . . . . . . 9 ( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) = (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})))
1716sseq1i 4008 . . . . . . . 8 (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ↔ (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶}))) ⊆ 𝑥)
1811, 12, 173bitr4i 302 . . . . . . 7 ((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ↔ ( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥)
1918anbi1i 622 . . . . . 6 (((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥))
20 unss 4185 . . . . . 6 ((( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥)
2110, 19, 203bitrri 297 . . . . 5 ((( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥 ↔ (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥))
22 naddfn 8705 . . . . . . . . 9 +no Fn (On × On)
23 fnfun 6660 . . . . . . . . 9 ( +no Fn (On × On) → Fun +no )
2422, 23ax-mp 5 . . . . . . . 8 Fun +no
25 imassrn 6080 . . . . . . . . . . 11 ( +no “ (𝐴 × {𝐵})) ⊆ ran +no
26 naddf 8711 . . . . . . . . . . . 12 +no :(On × On)⟶On
27 frn 6735 . . . . . . . . . . . 12 ( +no :(On × On)⟶On → ran +no ⊆ On)
2826, 27ax-mp 5 . . . . . . . . . . 11 ran +no ⊆ On
2925, 28sstri 3989 . . . . . . . . . 10 ( +no “ (𝐴 × {𝐵})) ⊆ On
30 simpl3 1190 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ∈ On)
3130snssd 4818 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐶} ⊆ On)
32 xpss12 5697 . . . . . . . . . 10 ((( +no “ (𝐴 × {𝐵})) ⊆ On ∧ {𝐶} ⊆ On) → (( +no “ (𝐴 × {𝐵})) × {𝐶}) ⊆ (On × On))
3329, 31, 32sylancr 585 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (𝐴 × {𝐵})) × {𝐶}) ⊆ (On × On))
3422fndmi 6664 . . . . . . . . 9 dom +no = (On × On)
3533, 34sseqtrrdi 4031 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (𝐴 × {𝐵})) × {𝐶}) ⊆ dom +no )
36 funimassov 7603 . . . . . . . 8 ((Fun +no ∧ (( +no “ (𝐴 × {𝐵})) × {𝐶}) ⊆ dom +no ) → (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥))
3724, 35, 36sylancr 585 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥))
38 oveq2 7432 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑝 +no 𝑐) = (𝑝 +no 𝐶))
3938eleq1d 2811 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥))
4039ralsng 4682 . . . . . . . . 9 (𝐶 ∈ On → (∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥))
4130, 40syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥))
4241ralbidv 3168 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥))
43 onss 7793 . . . . . . . . . . . 12 (𝐴 ∈ On → 𝐴 ⊆ On)
44433ad2ant1 1130 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On)
4544adantr 479 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ⊆ On)
46 simpl2 1189 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐵 ∈ On)
4746snssd 4818 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐵} ⊆ On)
48 xpss12 5697 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ {𝐵} ⊆ On) → (𝐴 × {𝐵}) ⊆ (On × On))
4945, 47, 48syl2anc 582 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 × {𝐵}) ⊆ (On × On))
50 oveq1 7431 . . . . . . . . . . 11 (𝑝 = (𝑎 +no 𝑏) → (𝑝 +no 𝐶) = ((𝑎 +no 𝑏) +no 𝐶))
5150eleq1d 2811 . . . . . . . . . 10 (𝑝 = (𝑎 +no 𝑏) → ((𝑝 +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥))
5251imaeqalov 7665 . . . . . . . . 9 (( +no Fn (On × On) ∧ (𝐴 × {𝐵}) ⊆ (On × On)) → (∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎𝐴𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥))
5322, 49, 52sylancr 585 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎𝐴𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥))
54 oveq2 7432 . . . . . . . . . . . . 13 (𝑏 = 𝐵 → (𝑎 +no 𝑏) = (𝑎 +no 𝐵))
5554oveq1d 7439 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ((𝑎 +no 𝑏) +no 𝐶) = ((𝑎 +no 𝐵) +no 𝐶))
5655eleq1d 2811 . . . . . . . . . . 11 (𝑏 = 𝐵 → (((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
5756ralsng 4682 . . . . . . . . . 10 (𝐵 ∈ On → (∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
5846, 57syl 17 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
5958ralbidv 3168 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑎𝐴𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
6053, 59bitrd 278 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
6137, 42, 603bitrd 304 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
62 imassrn 6080 . . . . . . . . . . 11 ( +no “ ({𝐴} × 𝐵)) ⊆ ran +no
6362, 28sstri 3989 . . . . . . . . . 10 ( +no “ ({𝐴} × 𝐵)) ⊆ On
64 xpss12 5697 . . . . . . . . . 10 ((( +no “ ({𝐴} × 𝐵)) ⊆ On ∧ {𝐶} ⊆ On) → (( +no “ ({𝐴} × 𝐵)) × {𝐶}) ⊆ (On × On))
6563, 31, 64sylancr 585 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({𝐴} × 𝐵)) × {𝐶}) ⊆ (On × On))
6665, 34sseqtrrdi 4031 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({𝐴} × 𝐵)) × {𝐶}) ⊆ dom +no )
67 funimassov 7603 . . . . . . . 8 ((Fun +no ∧ (( +no “ ({𝐴} × 𝐵)) × {𝐶}) ⊆ dom +no ) → (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥))
6824, 66, 67sylancr 585 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥))
6941ralbidv 3168 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥))
70 simpl1 1188 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
7170snssd 4818 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐴} ⊆ On)
72 onss 7793 . . . . . . . . . . . 12 (𝐵 ∈ On → 𝐵 ⊆ On)
73723ad2ant2 1131 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐵 ⊆ On)
7473adantr 479 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐵 ⊆ On)
75 xpss12 5697 . . . . . . . . . 10 (({𝐴} ⊆ On ∧ 𝐵 ⊆ On) → ({𝐴} × 𝐵) ⊆ (On × On))
7671, 74, 75syl2anc 582 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × 𝐵) ⊆ (On × On))
7751imaeqalov 7665 . . . . . . . . 9 (( +no Fn (On × On) ∧ ({𝐴} × 𝐵) ⊆ (On × On)) → (∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑏𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥))
7822, 76, 77sylancr 585 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑏𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥))
79 oveq1 7431 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
8079oveq1d 7439 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) +no 𝐶) = ((𝐴 +no 𝑏) +no 𝐶))
8180eleq1d 2811 . . . . . . . . . . 11 (𝑎 = 𝐴 → (((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
8281ralbidv 3168 . . . . . . . . . 10 (𝑎 = 𝐴 → (∀𝑏𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
8382ralsng 4682 . . . . . . . . 9 (𝐴 ∈ On → (∀𝑎 ∈ {𝐴}∀𝑏𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
8470, 83syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑎 ∈ {𝐴}∀𝑏𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
8578, 84bitrd 278 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
8668, 69, 853bitrd 304 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
872adantr 479 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 +no 𝐵) ∈ On)
8887snssd 4818 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {(𝐴 +no 𝐵)} ⊆ On)
89 onss 7793 . . . . . . . . . . . 12 (𝐶 ∈ On → 𝐶 ⊆ On)
90893ad2ant3 1132 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ⊆ On)
9190adantr 479 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ⊆ On)
92 xpss12 5697 . . . . . . . . . 10 (({(𝐴 +no 𝐵)} ⊆ On ∧ 𝐶 ⊆ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ (On × On))
9388, 91, 92syl2anc 582 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ (On × On))
9493, 34sseqtrrdi 4031 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ dom +no )
95 funimassov 7603 . . . . . . . 8 ((Fun +no ∧ ({(𝐴 +no 𝐵)} × 𝐶) ⊆ dom +no ) → (( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑎 ∈ {(𝐴 +no 𝐵)}∀𝑐𝐶 (𝑎 +no 𝑐) ∈ 𝑥))
9624, 94, 95sylancr 585 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑎 ∈ {(𝐴 +no 𝐵)}∀𝑐𝐶 (𝑎 +no 𝑐) ∈ 𝑥))
97 ovex 7457 . . . . . . . 8 (𝐴 +no 𝐵) ∈ V
98 oveq1 7431 . . . . . . . . . 10 (𝑎 = (𝐴 +no 𝐵) → (𝑎 +no 𝑐) = ((𝐴 +no 𝐵) +no 𝑐))
9998eleq1d 2811 . . . . . . . . 9 (𝑎 = (𝐴 +no 𝐵) → ((𝑎 +no 𝑐) ∈ 𝑥 ↔ ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥))
10099ralbidv 3168 . . . . . . . 8 (𝑎 = (𝐴 +no 𝐵) → (∀𝑐𝐶 (𝑎 +no 𝑐) ∈ 𝑥 ↔ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥))
10197, 100ralsn 4690 . . . . . . 7 (∀𝑎 ∈ {(𝐴 +no 𝐵)}∀𝑐𝐶 (𝑎 +no 𝑐) ∈ 𝑥 ↔ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)
10296, 101bitrdi 286 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥))
10361, 86, 1023anbi123d 1433 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)))
10421, 103bitrid 282 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥 ↔ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)))
105104rabbidva 3426 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥} = {𝑥 ∈ On ∣ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)})
106105inteqd 4959 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥} = {𝑥 ∈ On ∣ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)})
1079, 106eqtrd 2766 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = {𝑥 ∈ On ∣ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  {crab 3419  cun 3945  wss 3947  {csn 4633   cint 4954   × cxp 5680  dom cdm 5682  ran crn 5683  cima 5685  Oncon0 6376  Fun wfun 6548   Fn wfn 6549  wf 6550  (class class class)co 7424   +no cnadd 8695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-frecs 8296  df-nadd 8696
This theorem is referenced by:  naddass  8726
  Copyright terms: Public domain W3C validator