Step | Hyp | Ref
| Expression |
1 | | naddcl 8707 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On) |
2 | 1 | 3adant3 1129 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐵) ∈ On) |
3 | | simp3 1135 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On) |
4 | | naddov3 8710 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ∩ {𝑎 ∈ On ∣ (( +no
“ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) ⊆ 𝑎}) |
5 | 4 | 3adant3 1129 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐵) = ∩ {𝑎 ∈ On ∣ (( +no
“ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) ⊆ 𝑎}) |
6 | | intmin 4976 |
. . . . 5
⊢ (𝐶 ∈ On → ∩ {𝑐
∈ On ∣ 𝐶 ⊆
𝑐} = 𝐶) |
7 | 6 | eqcomd 2732 |
. . . 4
⊢ (𝐶 ∈ On → 𝐶 = ∩
{𝑐 ∈ On ∣ 𝐶 ⊆ 𝑐}) |
8 | 7 | 3ad2ant3 1132 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 = ∩
{𝑐 ∈ On ∣ 𝐶 ⊆ 𝑐}) |
9 | 2, 3, 5, 8 | naddunif 8723 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ∩ {𝑥 ∈ On ∣ (( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥}) |
10 | | df-3an 1086 |
. . . . . 6
⊢ ((( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no
“ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ ((( +no “ (( +no “
(𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥)) |
11 | | unss 4185 |
. . . . . . . 8
⊢ ((( +no
“ (( +no “ ({𝐴}
× 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥) ↔ (( +no “ (( +no “
({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “
(𝐴 × {𝐵})) × {𝐶}))) ⊆ 𝑥) |
12 | | ancom 459 |
. . . . . . . 8
⊢ ((( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no
“ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ↔ (( +no “ (( +no “
({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥)) |
13 | | xpundir 5751 |
. . . . . . . . . . 11
⊢ ((( +no
“ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶}) = ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶})) |
14 | 13 | imaeq2i 6067 |
. . . . . . . . . 10
⊢ ( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) = ( +no “ ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶}))) |
15 | | imaundi 6161 |
. . . . . . . . . 10
⊢ ( +no
“ ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶}))) = (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “
(𝐴 × {𝐵})) × {𝐶}))) |
16 | 14, 15 | eqtri 2754 |
. . . . . . . . 9
⊢ ( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) = (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “
(𝐴 × {𝐵})) × {𝐶}))) |
17 | 16 | sseq1i 4008 |
. . . . . . . 8
⊢ (( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ↔ (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “
(𝐴 × {𝐵})) × {𝐶}))) ⊆ 𝑥) |
18 | 11, 12, 17 | 3bitr4i 302 |
. . . . . . 7
⊢ ((( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no
“ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ↔ ( +no “ ((( +no “
({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥) |
19 | 18 | anbi1i 622 |
. . . . . 6
⊢ (((( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no
“ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (( +no “ ((( +no “
({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥)) |
20 | | unss 4185 |
. . . . . 6
⊢ ((( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (( +no “ ((( +no “
({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥) |
21 | 10, 19, 20 | 3bitrri 297 |
. . . . 5
⊢ ((( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥 ↔ (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥)) |
22 | | naddfn 8705 |
. . . . . . . . 9
⊢ +no Fn
(On × On) |
23 | | fnfun 6660 |
. . . . . . . . 9
⊢ ( +no Fn
(On × On) → Fun +no ) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . 8
⊢ Fun
+no |
25 | | imassrn 6080 |
. . . . . . . . . . 11
⊢ ( +no
“ (𝐴 × {𝐵})) ⊆ ran
+no |
26 | | naddf 8711 |
. . . . . . . . . . . 12
⊢ +no :(On
× On)⟶On |
27 | | frn 6735 |
. . . . . . . . . . . 12
⊢ ( +no
:(On × On)⟶On → ran +no ⊆ On) |
28 | 26, 27 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ran +no
⊆ On |
29 | 25, 28 | sstri 3989 |
. . . . . . . . . 10
⊢ ( +no
“ (𝐴 × {𝐵})) ⊆ On |
30 | | simpl3 1190 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ∈ On) |
31 | 30 | snssd 4818 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐶} ⊆ On) |
32 | | xpss12 5697 |
. . . . . . . . . 10
⊢ ((( +no
“ (𝐴 × {𝐵})) ⊆ On ∧ {𝐶} ⊆ On) → (( +no
“ (𝐴 × {𝐵})) × {𝐶}) ⊆ (On × On)) |
33 | 29, 31, 32 | sylancr 585 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (𝐴 × {𝐵})) × {𝐶}) ⊆ (On × On)) |
34 | 22 | fndmi 6664 |
. . . . . . . . 9
⊢ dom +no =
(On × On) |
35 | 33, 34 | sseqtrrdi 4031 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (𝐴 × {𝐵})) × {𝐶}) ⊆ dom +no ) |
36 | | funimassov 7603 |
. . . . . . . 8
⊢ ((Fun +no
∧ (( +no “ (𝐴
× {𝐵})) ×
{𝐶}) ⊆ dom +no )
→ (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥)) |
37 | 24, 35, 36 | sylancr 585 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥)) |
38 | | oveq2 7432 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝐶 → (𝑝 +no 𝑐) = (𝑝 +no 𝐶)) |
39 | 38 | eleq1d 2811 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 → ((𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥)) |
40 | 39 | ralsng 4682 |
. . . . . . . . 9
⊢ (𝐶 ∈ On → (∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥)) |
41 | 30, 40 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥)) |
42 | 41 | ralbidv 3168 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥)) |
43 | | onss 7793 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
44 | 43 | 3ad2ant1 1130 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On) |
45 | 44 | adantr 479 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ⊆ On) |
46 | | simpl2 1189 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐵 ∈ On) |
47 | 46 | snssd 4818 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐵} ⊆ On) |
48 | | xpss12 5697 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ {𝐵} ⊆ On) → (𝐴 × {𝐵}) ⊆ (On × On)) |
49 | 45, 47, 48 | syl2anc 582 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 × {𝐵}) ⊆ (On × On)) |
50 | | oveq1 7431 |
. . . . . . . . . . 11
⊢ (𝑝 = (𝑎 +no 𝑏) → (𝑝 +no 𝐶) = ((𝑎 +no 𝑏) +no 𝐶)) |
51 | 50 | eleq1d 2811 |
. . . . . . . . . 10
⊢ (𝑝 = (𝑎 +no 𝑏) → ((𝑝 +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
52 | 51 | imaeqalov 7665 |
. . . . . . . . 9
⊢ (( +no Fn
(On × On) ∧ (𝐴
× {𝐵}) ⊆ (On
× On)) → (∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
53 | 22, 49, 52 | sylancr 585 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
54 | | oveq2 7432 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝐵 → (𝑎 +no 𝑏) = (𝑎 +no 𝐵)) |
55 | 54 | oveq1d 7439 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝐵 → ((𝑎 +no 𝑏) +no 𝐶) = ((𝑎 +no 𝐵) +no 𝐶)) |
56 | 55 | eleq1d 2811 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝐵 → (((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
57 | 56 | ralsng 4682 |
. . . . . . . . . 10
⊢ (𝐵 ∈ On → (∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
58 | 46, 57 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
59 | 58 | ralbidv 3168 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑎 ∈ 𝐴 ∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
60 | 53, 59 | bitrd 278 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
61 | 37, 42, 60 | 3bitrd 304 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ↔ ∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥)) |
62 | | imassrn 6080 |
. . . . . . . . . . 11
⊢ ( +no
“ ({𝐴} × 𝐵)) ⊆ ran
+no |
63 | 62, 28 | sstri 3989 |
. . . . . . . . . 10
⊢ ( +no
“ ({𝐴} × 𝐵)) ⊆ On |
64 | | xpss12 5697 |
. . . . . . . . . 10
⊢ ((( +no
“ ({𝐴} × 𝐵)) ⊆ On ∧ {𝐶} ⊆ On) → (( +no
“ ({𝐴} × 𝐵)) × {𝐶}) ⊆ (On × On)) |
65 | 63, 31, 64 | sylancr 585 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({𝐴} × 𝐵)) × {𝐶}) ⊆ (On × On)) |
66 | 65, 34 | sseqtrrdi 4031 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({𝐴} × 𝐵)) × {𝐶}) ⊆ dom +no ) |
67 | | funimassov 7603 |
. . . . . . . 8
⊢ ((Fun +no
∧ (( +no “ ({𝐴}
× 𝐵)) × {𝐶}) ⊆ dom +no ) → ((
+no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥)) |
68 | 24, 66, 67 | sylancr 585 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (( +no “ ({𝐴}
× 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥)) |
69 | 41 | ralbidv 3168 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥)) |
70 | | simpl1 1188 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ∈ On) |
71 | 70 | snssd 4818 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐴} ⊆ On) |
72 | | onss 7793 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
73 | 72 | 3ad2ant2 1131 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐵 ⊆ On) |
74 | 73 | adantr 479 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐵 ⊆ On) |
75 | | xpss12 5697 |
. . . . . . . . . 10
⊢ (({𝐴} ⊆ On ∧ 𝐵 ⊆ On) → ({𝐴} × 𝐵) ⊆ (On × On)) |
76 | 71, 74, 75 | syl2anc 582 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × 𝐵) ⊆ (On × On)) |
77 | 51 | imaeqalov 7665 |
. . . . . . . . 9
⊢ (( +no Fn
(On × On) ∧ ({𝐴}
× 𝐵) ⊆ (On
× On)) → (∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑏 ∈ 𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
78 | 22, 76, 77 | sylancr 585 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑏 ∈ 𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
79 | | oveq1 7431 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏)) |
80 | 79 | oveq1d 7439 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → ((𝑎 +no 𝑏) +no 𝐶) = ((𝐴 +no 𝑏) +no 𝐶)) |
81 | 80 | eleq1d 2811 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
82 | 81 | ralbidv 3168 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (∀𝑏 ∈ 𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
83 | 82 | ralsng 4682 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → (∀𝑎 ∈ {𝐴}∀𝑏 ∈ 𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
84 | 70, 83 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑎 ∈ {𝐴}∀𝑏 ∈ 𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
85 | 78, 84 | bitrd 278 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) →
(∀𝑝 ∈ ( +no
“ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
86 | 68, 69, 85 | 3bitrd 304 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ (( +no “ ({𝐴}
× 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥)) |
87 | 2 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 +no 𝐵) ∈ On) |
88 | 87 | snssd 4818 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {(𝐴 +no 𝐵)} ⊆ On) |
89 | | onss 7793 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ On → 𝐶 ⊆ On) |
90 | 89 | 3ad2ant3 1132 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ⊆ On) |
91 | 90 | adantr 479 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ⊆ On) |
92 | | xpss12 5697 |
. . . . . . . . . 10
⊢ (({(𝐴 +no 𝐵)} ⊆ On ∧ 𝐶 ⊆ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ (On × On)) |
93 | 88, 91, 92 | syl2anc 582 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ (On × On)) |
94 | 93, 34 | sseqtrrdi 4031 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ dom +no ) |
95 | | funimassov 7603 |
. . . . . . . 8
⊢ ((Fun +no
∧ ({(𝐴 +no 𝐵)} × 𝐶) ⊆ dom +no ) → (( +no “
({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑎 ∈ {(𝐴 +no 𝐵)}∀𝑐 ∈ 𝐶 (𝑎 +no 𝑐) ∈ 𝑥)) |
96 | 24, 94, 95 | sylancr 585 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑎 ∈ {(𝐴 +no 𝐵)}∀𝑐 ∈ 𝐶 (𝑎 +no 𝑐) ∈ 𝑥)) |
97 | | ovex 7457 |
. . . . . . . 8
⊢ (𝐴 +no 𝐵) ∈ V |
98 | | oveq1 7431 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐴 +no 𝐵) → (𝑎 +no 𝑐) = ((𝐴 +no 𝐵) +no 𝑐)) |
99 | 98 | eleq1d 2811 |
. . . . . . . . 9
⊢ (𝑎 = (𝐴 +no 𝐵) → ((𝑎 +no 𝑐) ∈ 𝑥 ↔ ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)) |
100 | 99 | ralbidv 3168 |
. . . . . . . 8
⊢ (𝑎 = (𝐴 +no 𝐵) → (∀𝑐 ∈ 𝐶 (𝑎 +no 𝑐) ∈ 𝑥 ↔ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)) |
101 | 97, 100 | ralsn 4690 |
. . . . . . 7
⊢
(∀𝑎 ∈
{(𝐴 +no 𝐵)}∀𝑐 ∈ 𝐶 (𝑎 +no 𝑐) ∈ 𝑥 ↔ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥) |
102 | 96, 101 | bitrdi 286 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no
“ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)) |
103 | 61, 86, 102 | 3anbi123d 1433 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no
“ (( +no “ (𝐴
× {𝐵})) ×
{𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no
“ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥))) |
104 | 21, 103 | bitrid 282 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥 ↔ (∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥))) |
105 | 104 | rabbidva 3426 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ On ∣ (( +no
“ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥} = {𝑥 ∈ On ∣ (∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)}) |
106 | 105 | inteqd 4959 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ∩ {𝑥
∈ On ∣ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥} = ∩ {𝑥 ∈ On ∣
(∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)}) |
107 | 9, 106 | eqtrd 2766 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ∩ {𝑥 ∈ On ∣
(∀𝑎 ∈ 𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)}) |