MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddasslem1 Structured version   Visualization version   GIF version

Theorem naddasslem1 8750
Description: Lemma for naddass 8752. Expand out the expression for natural addition of three arguments. (Contributed by Scott Fenton, 20-Jan-2025.)
Assertion
Ref Expression
naddasslem1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = {𝑥 ∈ On ∣ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑥   𝐵,𝑎,𝑏,𝑐,𝑥   𝐶,𝑎,𝑏,𝑐,𝑥

Proof of Theorem naddasslem1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 naddcl 8733 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On)
213adant3 1132 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐵) ∈ On)
3 simp3 1138 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On)
4 naddov3 8736 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑎 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) ⊆ 𝑎})
543adant3 1132 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐵) = {𝑎 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) ⊆ 𝑎})
6 intmin 4992 . . . . 5 (𝐶 ∈ On → {𝑐 ∈ On ∣ 𝐶𝑐} = 𝐶)
76eqcomd 2746 . . . 4 (𝐶 ∈ On → 𝐶 = {𝑐 ∈ On ∣ 𝐶𝑐})
873ad2ant3 1135 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 = {𝑐 ∈ On ∣ 𝐶𝑐})
92, 3, 5, 8naddunif 8749 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = {𝑥 ∈ On ∣ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥})
10 df-3an 1089 . . . . . 6 ((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ ((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥))
11 unss 4213 . . . . . . . 8 ((( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥) ↔ (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶}))) ⊆ 𝑥)
12 ancom 460 . . . . . . . 8 ((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ↔ (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥))
13 xpundir 5769 . . . . . . . . . . 11 ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶}) = ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶}))
1413imaeq2i 6087 . . . . . . . . . 10 ( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) = ( +no “ ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶})))
15 imaundi 6181 . . . . . . . . . 10 ( +no “ ((( +no “ ({𝐴} × 𝐵)) × {𝐶}) ∪ (( +no “ (𝐴 × {𝐵})) × {𝐶}))) = (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})))
1614, 15eqtri 2768 . . . . . . . . 9 ( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) = (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})))
1716sseq1i 4037 . . . . . . . 8 (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ↔ (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ∪ ( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶}))) ⊆ 𝑥)
1811, 12, 173bitr4i 303 . . . . . . 7 ((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ↔ ( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥)
1918anbi1i 623 . . . . . 6 (((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥) ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥))
20 unss 4213 . . . . . 6 ((( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥)
2110, 19, 203bitrri 298 . . . . 5 ((( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥 ↔ (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥))
22 naddfn 8731 . . . . . . . . 9 +no Fn (On × On)
23 fnfun 6679 . . . . . . . . 9 ( +no Fn (On × On) → Fun +no )
2422, 23ax-mp 5 . . . . . . . 8 Fun +no
25 imassrn 6100 . . . . . . . . . . 11 ( +no “ (𝐴 × {𝐵})) ⊆ ran +no
26 naddf 8737 . . . . . . . . . . . 12 +no :(On × On)⟶On
27 frn 6754 . . . . . . . . . . . 12 ( +no :(On × On)⟶On → ran +no ⊆ On)
2826, 27ax-mp 5 . . . . . . . . . . 11 ran +no ⊆ On
2925, 28sstri 4018 . . . . . . . . . 10 ( +no “ (𝐴 × {𝐵})) ⊆ On
30 simpl3 1193 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ∈ On)
3130snssd 4834 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐶} ⊆ On)
32 xpss12 5715 . . . . . . . . . 10 ((( +no “ (𝐴 × {𝐵})) ⊆ On ∧ {𝐶} ⊆ On) → (( +no “ (𝐴 × {𝐵})) × {𝐶}) ⊆ (On × On))
3329, 31, 32sylancr 586 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (𝐴 × {𝐵})) × {𝐶}) ⊆ (On × On))
3422fndmi 6683 . . . . . . . . 9 dom +no = (On × On)
3533, 34sseqtrrdi 4060 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (𝐴 × {𝐵})) × {𝐶}) ⊆ dom +no )
36 funimassov 7627 . . . . . . . 8 ((Fun +no ∧ (( +no “ (𝐴 × {𝐵})) × {𝐶}) ⊆ dom +no ) → (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥))
3724, 35, 36sylancr 586 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥))
38 oveq2 7456 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑝 +no 𝑐) = (𝑝 +no 𝐶))
3938eleq1d 2829 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥))
4039ralsng 4697 . . . . . . . . 9 (𝐶 ∈ On → (∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥))
4130, 40syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ (𝑝 +no 𝐶) ∈ 𝑥))
4241ralbidv 3184 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥))
43 onss 7820 . . . . . . . . . . . 12 (𝐴 ∈ On → 𝐴 ⊆ On)
44433ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ⊆ On)
4544adantr 480 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ⊆ On)
46 simpl2 1192 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐵 ∈ On)
4746snssd 4834 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐵} ⊆ On)
48 xpss12 5715 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ {𝐵} ⊆ On) → (𝐴 × {𝐵}) ⊆ (On × On))
4945, 47, 48syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 × {𝐵}) ⊆ (On × On))
50 oveq1 7455 . . . . . . . . . . 11 (𝑝 = (𝑎 +no 𝑏) → (𝑝 +no 𝐶) = ((𝑎 +no 𝑏) +no 𝐶))
5150eleq1d 2829 . . . . . . . . . 10 (𝑝 = (𝑎 +no 𝑏) → ((𝑝 +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥))
5251imaeqalov 7689 . . . . . . . . 9 (( +no Fn (On × On) ∧ (𝐴 × {𝐵}) ⊆ (On × On)) → (∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎𝐴𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥))
5322, 49, 52sylancr 586 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎𝐴𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥))
54 oveq2 7456 . . . . . . . . . . . . 13 (𝑏 = 𝐵 → (𝑎 +no 𝑏) = (𝑎 +no 𝐵))
5554oveq1d 7463 . . . . . . . . . . . 12 (𝑏 = 𝐵 → ((𝑎 +no 𝑏) +no 𝐶) = ((𝑎 +no 𝐵) +no 𝐶))
5655eleq1d 2829 . . . . . . . . . . 11 (𝑏 = 𝐵 → (((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
5756ralsng 4697 . . . . . . . . . 10 (𝐵 ∈ On → (∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
5846, 57syl 17 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
5958ralbidv 3184 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑎𝐴𝑏 ∈ {𝐵} ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
6053, 59bitrd 279 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ (𝐴 × {𝐵}))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
6137, 42, 603bitrd 305 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥))
62 imassrn 6100 . . . . . . . . . . 11 ( +no “ ({𝐴} × 𝐵)) ⊆ ran +no
6362, 28sstri 4018 . . . . . . . . . 10 ( +no “ ({𝐴} × 𝐵)) ⊆ On
64 xpss12 5715 . . . . . . . . . 10 ((( +no “ ({𝐴} × 𝐵)) ⊆ On ∧ {𝐶} ⊆ On) → (( +no “ ({𝐴} × 𝐵)) × {𝐶}) ⊆ (On × On))
6563, 31, 64sylancr 586 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({𝐴} × 𝐵)) × {𝐶}) ⊆ (On × On))
6665, 34sseqtrrdi 4060 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({𝐴} × 𝐵)) × {𝐶}) ⊆ dom +no )
67 funimassov 7627 . . . . . . . 8 ((Fun +no ∧ (( +no “ ({𝐴} × 𝐵)) × {𝐶}) ⊆ dom +no ) → (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥))
6824, 66, 67sylancr 586 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥))
6941ralbidv 3184 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))∀𝑐 ∈ {𝐶} (𝑝 +no 𝑐) ∈ 𝑥 ↔ ∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥))
70 simpl1 1191 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
7170snssd 4834 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {𝐴} ⊆ On)
72 onss 7820 . . . . . . . . . . . 12 (𝐵 ∈ On → 𝐵 ⊆ On)
73723ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐵 ⊆ On)
7473adantr 480 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐵 ⊆ On)
75 xpss12 5715 . . . . . . . . . 10 (({𝐴} ⊆ On ∧ 𝐵 ⊆ On) → ({𝐴} × 𝐵) ⊆ (On × On))
7671, 74, 75syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({𝐴} × 𝐵) ⊆ (On × On))
7751imaeqalov 7689 . . . . . . . . 9 (( +no Fn (On × On) ∧ ({𝐴} × 𝐵) ⊆ (On × On)) → (∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑏𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥))
7822, 76, 77sylancr 586 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑎 ∈ {𝐴}∀𝑏𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥))
79 oveq1 7455 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
8079oveq1d 7463 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) +no 𝐶) = ((𝐴 +no 𝑏) +no 𝐶))
8180eleq1d 2829 . . . . . . . . . . 11 (𝑎 = 𝐴 → (((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
8281ralbidv 3184 . . . . . . . . . 10 (𝑎 = 𝐴 → (∀𝑏𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
8382ralsng 4697 . . . . . . . . 9 (𝐴 ∈ On → (∀𝑎 ∈ {𝐴}∀𝑏𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
8470, 83syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑎 ∈ {𝐴}∀𝑏𝐵 ((𝑎 +no 𝑏) +no 𝐶) ∈ 𝑥 ↔ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
8578, 84bitrd 279 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (∀𝑝 ∈ ( +no “ ({𝐴} × 𝐵))(𝑝 +no 𝐶) ∈ 𝑥 ↔ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
8668, 69, 853bitrd 305 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ↔ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥))
872adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (𝐴 +no 𝐵) ∈ On)
8887snssd 4834 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → {(𝐴 +no 𝐵)} ⊆ On)
89 onss 7820 . . . . . . . . . . . 12 (𝐶 ∈ On → 𝐶 ⊆ On)
90893ad2ant3 1135 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ⊆ On)
9190adantr 480 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → 𝐶 ⊆ On)
92 xpss12 5715 . . . . . . . . . 10 (({(𝐴 +no 𝐵)} ⊆ On ∧ 𝐶 ⊆ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ (On × On))
9388, 91, 92syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ (On × On))
9493, 34sseqtrrdi 4060 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ({(𝐴 +no 𝐵)} × 𝐶) ⊆ dom +no )
95 funimassov 7627 . . . . . . . 8 ((Fun +no ∧ ({(𝐴 +no 𝐵)} × 𝐶) ⊆ dom +no ) → (( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑎 ∈ {(𝐴 +no 𝐵)}∀𝑐𝐶 (𝑎 +no 𝑐) ∈ 𝑥))
9624, 94, 95sylancr 586 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑎 ∈ {(𝐴 +no 𝐵)}∀𝑐𝐶 (𝑎 +no 𝑐) ∈ 𝑥))
97 ovex 7481 . . . . . . . 8 (𝐴 +no 𝐵) ∈ V
98 oveq1 7455 . . . . . . . . . 10 (𝑎 = (𝐴 +no 𝐵) → (𝑎 +no 𝑐) = ((𝐴 +no 𝐵) +no 𝑐))
9998eleq1d 2829 . . . . . . . . 9 (𝑎 = (𝐴 +no 𝐵) → ((𝑎 +no 𝑐) ∈ 𝑥 ↔ ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥))
10099ralbidv 3184 . . . . . . . 8 (𝑎 = (𝐴 +no 𝐵) → (∀𝑐𝐶 (𝑎 +no 𝑐) ∈ 𝑥 ↔ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥))
10197, 100ralsn 4705 . . . . . . 7 (∀𝑎 ∈ {(𝐴 +no 𝐵)}∀𝑐𝐶 (𝑎 +no 𝑐) ∈ 𝑥 ↔ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)
10296, 101bitrdi 287 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → (( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥 ↔ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥))
10361, 86, 1023anbi123d 1436 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no “ (( +no “ (𝐴 × {𝐵})) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ (( +no “ ({𝐴} × 𝐵)) × {𝐶})) ⊆ 𝑥 ∧ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶)) ⊆ 𝑥) ↔ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)))
10421, 103bitrid 283 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ On) → ((( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥 ↔ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)))
105104rabbidva 3450 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥} = {𝑥 ∈ On ∣ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)})
106105inteqd 4975 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ((( +no “ ({𝐴} × 𝐵)) ∪ ( +no “ (𝐴 × {𝐵}))) × {𝐶})) ∪ ( +no “ ({(𝐴 +no 𝐵)} × 𝐶))) ⊆ 𝑥} = {𝑥 ∈ On ∣ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)})
1079, 106eqtrd 2780 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = {𝑥 ∈ On ∣ (∀𝑎𝐴 ((𝑎 +no 𝐵) +no 𝐶) ∈ 𝑥 ∧ ∀𝑏𝐵 ((𝐴 +no 𝑏) +no 𝐶) ∈ 𝑥 ∧ ∀𝑐𝐶 ((𝐴 +no 𝐵) +no 𝑐) ∈ 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cun 3974  wss 3976  {csn 4648   cint 4970   × cxp 5698  dom cdm 5700  ran crn 5701  cima 5703  Oncon0 6395  Fun wfun 6567   Fn wfn 6568  wf 6569  (class class class)co 7448   +no cnadd 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-nadd 8722
This theorem is referenced by:  naddass  8752
  Copyright terms: Public domain W3C validator