Step | Hyp | Ref
| Expression |
1 | | naddcl 8680 |
. . . 4
β’ ((π΄ β On β§ π΅ β On) β (π΄ +no π΅) β On) |
2 | 1 | 3adant3 1131 |
. . 3
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β (π΄ +no π΅) β On) |
3 | | simp3 1137 |
. . 3
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β πΆ β On) |
4 | | naddov3 8683 |
. . . 4
β’ ((π΄ β On β§ π΅ β On) β (π΄ +no π΅) = β© {π β On β£ (( +no
β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) β π}) |
5 | 4 | 3adant3 1131 |
. . 3
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β (π΄ +no π΅) = β© {π β On β£ (( +no
β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) β π}) |
6 | | intmin 4972 |
. . . . 5
β’ (πΆ β On β β© {π
β On β£ πΆ β
π} = πΆ) |
7 | 6 | eqcomd 2737 |
. . . 4
β’ (πΆ β On β πΆ = β©
{π β On β£ πΆ β π}) |
8 | 7 | 3ad2ant3 1134 |
. . 3
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β πΆ = β©
{π β On β£ πΆ β π}) |
9 | 2, 3, 5, 8 | naddunif 8696 |
. 2
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β ((π΄ +no π΅) +no πΆ) = β© {π₯ β On β£ (( +no
β ((( +no β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) βͺ ( +no β ({(π΄ +no π΅)} Γ πΆ))) β π₯}) |
10 | | df-3an 1088 |
. . . . . 6
β’ ((( +no
β (( +no β (π΄
Γ {π΅})) Γ
{πΆ})) β π₯ β§ ( +no β (( +no
β ({π΄} Γ π΅)) Γ {πΆ})) β π₯ β§ ( +no β ({(π΄ +no π΅)} Γ πΆ)) β π₯) β ((( +no β (( +no β
(π΄ Γ {π΅})) Γ {πΆ})) β π₯ β§ ( +no β (( +no β ({π΄} Γ π΅)) Γ {πΆ})) β π₯) β§ ( +no β ({(π΄ +no π΅)} Γ πΆ)) β π₯)) |
11 | | unss 4184 |
. . . . . . . 8
β’ ((( +no
β (( +no β ({π΄}
Γ π΅)) Γ {πΆ})) β π₯ β§ ( +no β (( +no β (π΄ Γ {π΅})) Γ {πΆ})) β π₯) β (( +no β (( +no β
({π΄} Γ π΅)) Γ {πΆ})) βͺ ( +no β (( +no β
(π΄ Γ {π΅})) Γ {πΆ}))) β π₯) |
12 | | ancom 460 |
. . . . . . . 8
β’ ((( +no
β (( +no β (π΄
Γ {π΅})) Γ
{πΆ})) β π₯ β§ ( +no β (( +no
β ({π΄} Γ π΅)) Γ {πΆ})) β π₯) β (( +no β (( +no β
({π΄} Γ π΅)) Γ {πΆ})) β π₯ β§ ( +no β (( +no β (π΄ Γ {π΅})) Γ {πΆ})) β π₯)) |
13 | | xpundir 5745 |
. . . . . . . . . . 11
β’ ((( +no
β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ}) = ((( +no β ({π΄} Γ π΅)) Γ {πΆ}) βͺ (( +no β (π΄ Γ {π΅})) Γ {πΆ})) |
14 | 13 | imaeq2i 6057 |
. . . . . . . . . 10
β’ ( +no
β ((( +no β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) = ( +no β ((( +no β ({π΄} Γ π΅)) Γ {πΆ}) βͺ (( +no β (π΄ Γ {π΅})) Γ {πΆ}))) |
15 | | imaundi 6149 |
. . . . . . . . . 10
β’ ( +no
β ((( +no β ({π΄} Γ π΅)) Γ {πΆ}) βͺ (( +no β (π΄ Γ {π΅})) Γ {πΆ}))) = (( +no β (( +no β ({π΄} Γ π΅)) Γ {πΆ})) βͺ ( +no β (( +no β
(π΄ Γ {π΅})) Γ {πΆ}))) |
16 | 14, 15 | eqtri 2759 |
. . . . . . . . 9
β’ ( +no
β ((( +no β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) = (( +no β (( +no β ({π΄} Γ π΅)) Γ {πΆ})) βͺ ( +no β (( +no β
(π΄ Γ {π΅})) Γ {πΆ}))) |
17 | 16 | sseq1i 4010 |
. . . . . . . 8
β’ (( +no
β ((( +no β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) β π₯ β (( +no β (( +no β ({π΄} Γ π΅)) Γ {πΆ})) βͺ ( +no β (( +no β
(π΄ Γ {π΅})) Γ {πΆ}))) β π₯) |
18 | 11, 12, 17 | 3bitr4i 303 |
. . . . . . 7
β’ ((( +no
β (( +no β (π΄
Γ {π΅})) Γ
{πΆ})) β π₯ β§ ( +no β (( +no
β ({π΄} Γ π΅)) Γ {πΆ})) β π₯) β ( +no β ((( +no β
({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) β π₯) |
19 | 18 | anbi1i 623 |
. . . . . 6
β’ (((( +no
β (( +no β (π΄
Γ {π΅})) Γ
{πΆ})) β π₯ β§ ( +no β (( +no
β ({π΄} Γ π΅)) Γ {πΆ})) β π₯) β§ ( +no β ({(π΄ +no π΅)} Γ πΆ)) β π₯) β (( +no β ((( +no β
({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) β π₯ β§ ( +no β ({(π΄ +no π΅)} Γ πΆ)) β π₯)) |
20 | | unss 4184 |
. . . . . 6
β’ ((( +no
β ((( +no β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) β π₯ β§ ( +no β ({(π΄ +no π΅)} Γ πΆ)) β π₯) β (( +no β ((( +no β
({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) βͺ ( +no β ({(π΄ +no π΅)} Γ πΆ))) β π₯) |
21 | 10, 19, 20 | 3bitrri 298 |
. . . . 5
β’ ((( +no
β ((( +no β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) βͺ ( +no β ({(π΄ +no π΅)} Γ πΆ))) β π₯ β (( +no β (( +no β (π΄ Γ {π΅})) Γ {πΆ})) β π₯ β§ ( +no β (( +no β ({π΄} Γ π΅)) Γ {πΆ})) β π₯ β§ ( +no β ({(π΄ +no π΅)} Γ πΆ)) β π₯)) |
22 | | naddfn 8678 |
. . . . . . . . 9
β’ +no Fn
(On Γ On) |
23 | | fnfun 6649 |
. . . . . . . . 9
β’ ( +no Fn
(On Γ On) β Fun +no ) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . 8
β’ Fun
+no |
25 | | imassrn 6070 |
. . . . . . . . . . 11
β’ ( +no
β (π΄ Γ {π΅})) β ran
+no |
26 | | naddf 8684 |
. . . . . . . . . . . 12
β’ +no :(On
Γ On)βΆOn |
27 | | frn 6724 |
. . . . . . . . . . . 12
β’ ( +no
:(On Γ On)βΆOn β ran +no β On) |
28 | 26, 27 | ax-mp 5 |
. . . . . . . . . . 11
β’ ran +no
β On |
29 | 25, 28 | sstri 3991 |
. . . . . . . . . 10
β’ ( +no
β (π΄ Γ {π΅})) β On |
30 | | simpl3 1192 |
. . . . . . . . . . 11
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β πΆ β On) |
31 | 30 | snssd 4812 |
. . . . . . . . . 10
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β {πΆ} β On) |
32 | | xpss12 5691 |
. . . . . . . . . 10
β’ ((( +no
β (π΄ Γ {π΅})) β On β§ {πΆ} β On) β (( +no
β (π΄ Γ {π΅})) Γ {πΆ}) β (On Γ On)) |
33 | 29, 31, 32 | sylancr 586 |
. . . . . . . . 9
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (( +no
β (π΄ Γ {π΅})) Γ {πΆ}) β (On Γ On)) |
34 | 22 | fndmi 6653 |
. . . . . . . . 9
β’ dom +no =
(On Γ On) |
35 | 33, 34 | sseqtrrdi 4033 |
. . . . . . . 8
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (( +no
β (π΄ Γ {π΅})) Γ {πΆ}) β dom +no ) |
36 | | funimassov 7588 |
. . . . . . . 8
β’ ((Fun +no
β§ (( +no β (π΄
Γ {π΅})) Γ
{πΆ}) β dom +no )
β (( +no β (( +no β (π΄ Γ {π΅})) Γ {πΆ})) β π₯ β βπ β ( +no β (π΄ Γ {π΅}))βπ β {πΆ} (π +no π) β π₯)) |
37 | 24, 35, 36 | sylancr 586 |
. . . . . . 7
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (( +no
β (( +no β (π΄
Γ {π΅})) Γ
{πΆ})) β π₯ β βπ β ( +no β (π΄ Γ {π΅}))βπ β {πΆ} (π +no π) β π₯)) |
38 | | oveq2 7420 |
. . . . . . . . . . 11
β’ (π = πΆ β (π +no π) = (π +no πΆ)) |
39 | 38 | eleq1d 2817 |
. . . . . . . . . 10
β’ (π = πΆ β ((π +no π) β π₯ β (π +no πΆ) β π₯)) |
40 | 39 | ralsng 4677 |
. . . . . . . . 9
β’ (πΆ β On β (βπ β {πΆ} (π +no π) β π₯ β (π +no πΆ) β π₯)) |
41 | 30, 40 | syl 17 |
. . . . . . . 8
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β
(βπ β {πΆ} (π +no π) β π₯ β (π +no πΆ) β π₯)) |
42 | 41 | ralbidv 3176 |
. . . . . . 7
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β
(βπ β ( +no
β (π΄ Γ {π΅}))βπ β {πΆ} (π +no π) β π₯ β βπ β ( +no β (π΄ Γ {π΅}))(π +no πΆ) β π₯)) |
43 | | onss 7776 |
. . . . . . . . . . . 12
β’ (π΄ β On β π΄ β On) |
44 | 43 | 3ad2ant1 1132 |
. . . . . . . . . . 11
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β π΄ β On) |
45 | 44 | adantr 480 |
. . . . . . . . . 10
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β π΄ β On) |
46 | | simpl2 1191 |
. . . . . . . . . . 11
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β π΅ β On) |
47 | 46 | snssd 4812 |
. . . . . . . . . 10
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β {π΅} β On) |
48 | | xpss12 5691 |
. . . . . . . . . 10
β’ ((π΄ β On β§ {π΅} β On) β (π΄ Γ {π΅}) β (On Γ On)) |
49 | 45, 47, 48 | syl2anc 583 |
. . . . . . . . 9
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (π΄ Γ {π΅}) β (On Γ On)) |
50 | | oveq1 7419 |
. . . . . . . . . . 11
β’ (π = (π +no π) β (π +no πΆ) = ((π +no π) +no πΆ)) |
51 | 50 | eleq1d 2817 |
. . . . . . . . . 10
β’ (π = (π +no π) β ((π +no πΆ) β π₯ β ((π +no π) +no πΆ) β π₯)) |
52 | 51 | imaeqalov 7650 |
. . . . . . . . 9
β’ (( +no Fn
(On Γ On) β§ (π΄
Γ {π΅}) β (On
Γ On)) β (βπ β ( +no β (π΄ Γ {π΅}))(π +no πΆ) β π₯ β βπ β π΄ βπ β {π΅} ((π +no π) +no πΆ) β π₯)) |
53 | 22, 49, 52 | sylancr 586 |
. . . . . . . 8
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β
(βπ β ( +no
β (π΄ Γ {π΅}))(π +no πΆ) β π₯ β βπ β π΄ βπ β {π΅} ((π +no π) +no πΆ) β π₯)) |
54 | | oveq2 7420 |
. . . . . . . . . . . . 13
β’ (π = π΅ β (π +no π) = (π +no π΅)) |
55 | 54 | oveq1d 7427 |
. . . . . . . . . . . 12
β’ (π = π΅ β ((π +no π) +no πΆ) = ((π +no π΅) +no πΆ)) |
56 | 55 | eleq1d 2817 |
. . . . . . . . . . 11
β’ (π = π΅ β (((π +no π) +no πΆ) β π₯ β ((π +no π΅) +no πΆ) β π₯)) |
57 | 56 | ralsng 4677 |
. . . . . . . . . 10
β’ (π΅ β On β (βπ β {π΅} ((π +no π) +no πΆ) β π₯ β ((π +no π΅) +no πΆ) β π₯)) |
58 | 46, 57 | syl 17 |
. . . . . . . . 9
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β
(βπ β {π΅} ((π +no π) +no πΆ) β π₯ β ((π +no π΅) +no πΆ) β π₯)) |
59 | 58 | ralbidv 3176 |
. . . . . . . 8
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β
(βπ β π΄ βπ β {π΅} ((π +no π) +no πΆ) β π₯ β βπ β π΄ ((π +no π΅) +no πΆ) β π₯)) |
60 | 53, 59 | bitrd 279 |
. . . . . . 7
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β
(βπ β ( +no
β (π΄ Γ {π΅}))(π +no πΆ) β π₯ β βπ β π΄ ((π +no π΅) +no πΆ) β π₯)) |
61 | 37, 42, 60 | 3bitrd 305 |
. . . . . 6
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (( +no
β (( +no β (π΄
Γ {π΅})) Γ
{πΆ})) β π₯ β βπ β π΄ ((π +no π΅) +no πΆ) β π₯)) |
62 | | imassrn 6070 |
. . . . . . . . . . 11
β’ ( +no
β ({π΄} Γ π΅)) β ran
+no |
63 | 62, 28 | sstri 3991 |
. . . . . . . . . 10
β’ ( +no
β ({π΄} Γ π΅)) β On |
64 | | xpss12 5691 |
. . . . . . . . . 10
β’ ((( +no
β ({π΄} Γ π΅)) β On β§ {πΆ} β On) β (( +no
β ({π΄} Γ π΅)) Γ {πΆ}) β (On Γ On)) |
65 | 63, 31, 64 | sylancr 586 |
. . . . . . . . 9
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (( +no
β ({π΄} Γ π΅)) Γ {πΆ}) β (On Γ On)) |
66 | 65, 34 | sseqtrrdi 4033 |
. . . . . . . 8
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (( +no
β ({π΄} Γ π΅)) Γ {πΆ}) β dom +no ) |
67 | | funimassov 7588 |
. . . . . . . 8
β’ ((Fun +no
β§ (( +no β ({π΄}
Γ π΅)) Γ {πΆ}) β dom +no ) β ((
+no β (( +no β ({π΄} Γ π΅)) Γ {πΆ})) β π₯ β βπ β ( +no β ({π΄} Γ π΅))βπ β {πΆ} (π +no π) β π₯)) |
68 | 24, 66, 67 | sylancr 586 |
. . . . . . 7
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (( +no
β (( +no β ({π΄}
Γ π΅)) Γ {πΆ})) β π₯ β βπ β ( +no β ({π΄} Γ π΅))βπ β {πΆ} (π +no π) β π₯)) |
69 | 41 | ralbidv 3176 |
. . . . . . 7
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β
(βπ β ( +no
β ({π΄} Γ π΅))βπ β {πΆ} (π +no π) β π₯ β βπ β ( +no β ({π΄} Γ π΅))(π +no πΆ) β π₯)) |
70 | | simpl1 1190 |
. . . . . . . . . . 11
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β π΄ β On) |
71 | 70 | snssd 4812 |
. . . . . . . . . 10
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β {π΄} β On) |
72 | | onss 7776 |
. . . . . . . . . . . 12
β’ (π΅ β On β π΅ β On) |
73 | 72 | 3ad2ant2 1133 |
. . . . . . . . . . 11
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β π΅ β On) |
74 | 73 | adantr 480 |
. . . . . . . . . 10
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β π΅ β On) |
75 | | xpss12 5691 |
. . . . . . . . . 10
β’ (({π΄} β On β§ π΅ β On) β ({π΄} Γ π΅) β (On Γ On)) |
76 | 71, 74, 75 | syl2anc 583 |
. . . . . . . . 9
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β ({π΄} Γ π΅) β (On Γ On)) |
77 | 51 | imaeqalov 7650 |
. . . . . . . . 9
β’ (( +no Fn
(On Γ On) β§ ({π΄}
Γ π΅) β (On
Γ On)) β (βπ β ( +no β ({π΄} Γ π΅))(π +no πΆ) β π₯ β βπ β {π΄}βπ β π΅ ((π +no π) +no πΆ) β π₯)) |
78 | 22, 76, 77 | sylancr 586 |
. . . . . . . 8
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β
(βπ β ( +no
β ({π΄} Γ π΅))(π +no πΆ) β π₯ β βπ β {π΄}βπ β π΅ ((π +no π) +no πΆ) β π₯)) |
79 | | oveq1 7419 |
. . . . . . . . . . . . 13
β’ (π = π΄ β (π +no π) = (π΄ +no π)) |
80 | 79 | oveq1d 7427 |
. . . . . . . . . . . 12
β’ (π = π΄ β ((π +no π) +no πΆ) = ((π΄ +no π) +no πΆ)) |
81 | 80 | eleq1d 2817 |
. . . . . . . . . . 11
β’ (π = π΄ β (((π +no π) +no πΆ) β π₯ β ((π΄ +no π) +no πΆ) β π₯)) |
82 | 81 | ralbidv 3176 |
. . . . . . . . . 10
β’ (π = π΄ β (βπ β π΅ ((π +no π) +no πΆ) β π₯ β βπ β π΅ ((π΄ +no π) +no πΆ) β π₯)) |
83 | 82 | ralsng 4677 |
. . . . . . . . 9
β’ (π΄ β On β (βπ β {π΄}βπ β π΅ ((π +no π) +no πΆ) β π₯ β βπ β π΅ ((π΄ +no π) +no πΆ) β π₯)) |
84 | 70, 83 | syl 17 |
. . . . . . . 8
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β
(βπ β {π΄}βπ β π΅ ((π +no π) +no πΆ) β π₯ β βπ β π΅ ((π΄ +no π) +no πΆ) β π₯)) |
85 | 78, 84 | bitrd 279 |
. . . . . . 7
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β
(βπ β ( +no
β ({π΄} Γ π΅))(π +no πΆ) β π₯ β βπ β π΅ ((π΄ +no π) +no πΆ) β π₯)) |
86 | 68, 69, 85 | 3bitrd 305 |
. . . . . 6
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (( +no
β (( +no β ({π΄}
Γ π΅)) Γ {πΆ})) β π₯ β βπ β π΅ ((π΄ +no π) +no πΆ) β π₯)) |
87 | 2 | adantr 480 |
. . . . . . . . . . 11
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (π΄ +no π΅) β On) |
88 | 87 | snssd 4812 |
. . . . . . . . . 10
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β {(π΄ +no π΅)} β On) |
89 | | onss 7776 |
. . . . . . . . . . . 12
β’ (πΆ β On β πΆ β On) |
90 | 89 | 3ad2ant3 1134 |
. . . . . . . . . . 11
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β πΆ β On) |
91 | 90 | adantr 480 |
. . . . . . . . . 10
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β πΆ β On) |
92 | | xpss12 5691 |
. . . . . . . . . 10
β’ (({(π΄ +no π΅)} β On β§ πΆ β On) β ({(π΄ +no π΅)} Γ πΆ) β (On Γ On)) |
93 | 88, 91, 92 | syl2anc 583 |
. . . . . . . . 9
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β ({(π΄ +no π΅)} Γ πΆ) β (On Γ On)) |
94 | 93, 34 | sseqtrrdi 4033 |
. . . . . . . 8
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β ({(π΄ +no π΅)} Γ πΆ) β dom +no ) |
95 | | funimassov 7588 |
. . . . . . . 8
β’ ((Fun +no
β§ ({(π΄ +no π΅)} Γ πΆ) β dom +no ) β (( +no β
({(π΄ +no π΅)} Γ πΆ)) β π₯ β βπ β {(π΄ +no π΅)}βπ β πΆ (π +no π) β π₯)) |
96 | 24, 94, 95 | sylancr 586 |
. . . . . . 7
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (( +no
β ({(π΄ +no π΅)} Γ πΆ)) β π₯ β βπ β {(π΄ +no π΅)}βπ β πΆ (π +no π) β π₯)) |
97 | | ovex 7445 |
. . . . . . . 8
β’ (π΄ +no π΅) β V |
98 | | oveq1 7419 |
. . . . . . . . . 10
β’ (π = (π΄ +no π΅) β (π +no π) = ((π΄ +no π΅) +no π)) |
99 | 98 | eleq1d 2817 |
. . . . . . . . 9
β’ (π = (π΄ +no π΅) β ((π +no π) β π₯ β ((π΄ +no π΅) +no π) β π₯)) |
100 | 99 | ralbidv 3176 |
. . . . . . . 8
β’ (π = (π΄ +no π΅) β (βπ β πΆ (π +no π) β π₯ β βπ β πΆ ((π΄ +no π΅) +no π) β π₯)) |
101 | 97, 100 | ralsn 4685 |
. . . . . . 7
β’
(βπ β
{(π΄ +no π΅)}βπ β πΆ (π +no π) β π₯ β βπ β πΆ ((π΄ +no π΅) +no π) β π₯) |
102 | 96, 101 | bitrdi 287 |
. . . . . 6
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β (( +no
β ({(π΄ +no π΅)} Γ πΆ)) β π₯ β βπ β πΆ ((π΄ +no π΅) +no π) β π₯)) |
103 | 61, 86, 102 | 3anbi123d 1435 |
. . . . 5
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β ((( +no
β (( +no β (π΄
Γ {π΅})) Γ
{πΆ})) β π₯ β§ ( +no β (( +no
β ({π΄} Γ π΅)) Γ {πΆ})) β π₯ β§ ( +no β ({(π΄ +no π΅)} Γ πΆ)) β π₯) β (βπ β π΄ ((π +no π΅) +no πΆ) β π₯ β§ βπ β π΅ ((π΄ +no π) +no πΆ) β π₯ β§ βπ β πΆ ((π΄ +no π΅) +no π) β π₯))) |
104 | 21, 103 | bitrid 283 |
. . . 4
β’ (((π΄ β On β§ π΅ β On β§ πΆ β On) β§ π₯ β On) β ((( +no
β ((( +no β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) βͺ ( +no β ({(π΄ +no π΅)} Γ πΆ))) β π₯ β (βπ β π΄ ((π +no π΅) +no πΆ) β π₯ β§ βπ β π΅ ((π΄ +no π) +no πΆ) β π₯ β§ βπ β πΆ ((π΄ +no π΅) +no π) β π₯))) |
105 | 104 | rabbidva 3438 |
. . 3
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β {π₯ β On β£ (( +no
β ((( +no β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) βͺ ( +no β ({(π΄ +no π΅)} Γ πΆ))) β π₯} = {π₯ β On β£ (βπ β π΄ ((π +no π΅) +no πΆ) β π₯ β§ βπ β π΅ ((π΄ +no π) +no πΆ) β π₯ β§ βπ β πΆ ((π΄ +no π΅) +no π) β π₯)}) |
106 | 105 | inteqd 4955 |
. 2
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β β© {π₯
β On β£ (( +no β ((( +no β ({π΄} Γ π΅)) βͺ ( +no β (π΄ Γ {π΅}))) Γ {πΆ})) βͺ ( +no β ({(π΄ +no π΅)} Γ πΆ))) β π₯} = β© {π₯ β On β£
(βπ β π΄ ((π +no π΅) +no πΆ) β π₯ β§ βπ β π΅ ((π΄ +no π) +no πΆ) β π₯ β§ βπ β πΆ ((π΄ +no π΅) +no π) β π₯)}) |
107 | 9, 106 | eqtrd 2771 |
1
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β ((π΄ +no π΅) +no πΆ) = β© {π₯ β On β£
(βπ β π΄ ((π +no π΅) +no πΆ) β π₯ β§ βπ β π΅ ((π΄ +no π) +no πΆ) β π₯ β§ βπ β πΆ ((π΄ +no π΅) +no π) β π₯)}) |