Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrltnled Structured version   Visualization version   GIF version

Theorem xrltnled 45374
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
xrltnled.1 (𝜑𝐴 ∈ ℝ*)
xrltnled.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xrltnled (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem xrltnled
StepHypRef Expression
1 xrltnled.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 xrltnled.2 . 2 (𝜑𝐵 ∈ ℝ*)
3 xrltnle 11328 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2108   class class class wbr 5143  *cxr 11294   < clt 11295  cle 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-le 11301
This theorem is referenced by:  infxrbnd2  45380  infleinflem2  45382  xrralrecnnge  45401  qinioo  45548  limsuppnflem  45725  limsupre2lem  45739  meaiuninc3v  46499  ovolval4lem1  46664  preimagelt  46714  preimalegt  46715
  Copyright terms: Public domain W3C validator