Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrltnled | Structured version Visualization version GIF version |
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
xrltnled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrltnled.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
xrltnled | ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltnled.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrltnled.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xrltnle 11026 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2109 class class class wbr 5078 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-cnv 5596 df-le 10999 |
This theorem is referenced by: infxrbnd2 42862 infleinflem2 42864 xrralrecnnge 42884 qinioo 43027 limsuppnflem 43205 limsupre2lem 43219 meaiuninc3v 43976 ovolval4lem1 44141 preimagelt 44190 preimalegt 44191 |
Copyright terms: Public domain | W3C validator |