![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrltnled | Structured version Visualization version GIF version |
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
xrltnled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrltnled.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
xrltnled | ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltnled.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrltnled.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xrltnle 10395 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | |
4 | 1, 2, 3 | syl2anc 580 | 1 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∈ wcel 2157 class class class wbr 4843 ℝ*cxr 10362 < clt 10363 ≤ cle 10364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-cnv 5320 df-le 10369 |
This theorem is referenced by: infxrbnd2 40329 infleinflem2 40331 xrralrecnnge 40356 qinioo 40506 limsuppnflem 40686 limsupre2lem 40700 meaiuninc3v 41444 ovolval4lem1 41609 preimagelt 41658 preimalegt 41659 |
Copyright terms: Public domain | W3C validator |