Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrltnled Structured version   Visualization version   GIF version

Theorem xrltnled 45366
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
xrltnled.1 (𝜑𝐴 ∈ ℝ*)
xrltnled.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xrltnled (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem xrltnled
StepHypRef Expression
1 xrltnled.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 xrltnled.2 . 2 (𝜑𝐵 ∈ ℝ*)
3 xrltnle 11248 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109   class class class wbr 5110  *cxr 11214   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-le 11221
This theorem is referenced by:  infxrbnd2  45372  infleinflem2  45374  xrralrecnnge  45393  qinioo  45540  limsuppnflem  45715  limsupre2lem  45729  meaiuninc3v  46489  ovolval4lem1  46654  preimagelt  46704  preimalegt  46705
  Copyright terms: Public domain W3C validator