Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinflem2 Structured version   Visualization version   GIF version

Theorem infleinflem2 42583
Description: Lemma for infleinf 42584, when inf(𝐵, ℝ*, < ) = -∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinflem2.a (𝜑𝐴 ⊆ ℝ*)
infleinflem2.b (𝜑𝐵 ⊆ ℝ*)
infleinflem2.r (𝜑𝑅 ∈ ℝ)
infleinflem2.x (𝜑𝑋𝐵)
infleinflem2.t (𝜑𝑋 < (𝑅 − 2))
infleinflem2.z (𝜑𝑍𝐴)
infleinflem2.l (𝜑𝑍 ≤ (𝑋 +𝑒 1))
Assertion
Ref Expression
infleinflem2 (𝜑𝑍 < 𝑅)

Proof of Theorem infleinflem2
StepHypRef Expression
1 infleinflem2.r . . . 4 (𝜑𝑅 ∈ ℝ)
21adantr 484 . . 3 ((𝜑𝑍 = -∞) → 𝑅 ∈ ℝ)
3 simpr 488 . . 3 ((𝜑𝑍 = -∞) → 𝑍 = -∞)
4 simpr 488 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → 𝑍 = -∞)
5 mnflt 12715 . . . . 5 (𝑅 ∈ ℝ → -∞ < 𝑅)
65adantr 484 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → -∞ < 𝑅)
74, 6eqbrtrd 5075 . . 3 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → 𝑍 < 𝑅)
82, 3, 7syl2anc 587 . 2 ((𝜑𝑍 = -∞) → 𝑍 < 𝑅)
9 simpl 486 . . 3 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝜑)
10 neqne 2948 . . . 4 𝑍 = -∞ → 𝑍 ≠ -∞)
1110adantl 485 . . 3 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝑍 ≠ -∞)
121adantr 484 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑅 ∈ ℝ)
13 id 22 . . . . . . . 8 (𝜑𝜑)
14 infleinflem2.x . . . . . . . 8 (𝜑𝑋𝐵)
15 infleinflem2.b . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ*)
1615sselda 3901 . . . . . . . 8 ((𝜑𝑋𝐵) → 𝑋 ∈ ℝ*)
1713, 14, 16syl2anc 587 . . . . . . 7 (𝜑𝑋 ∈ ℝ*)
1817adantr 484 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ∈ ℝ*)
19 infleinflem2.z . . . . . . . . . 10 (𝜑𝑍𝐴)
20 infleinflem2.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ*)
2120sselda 3901 . . . . . . . . . 10 ((𝜑𝑍𝐴) → 𝑍 ∈ ℝ*)
2213, 19, 21syl2anc 587 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ*)
2322adantr 484 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ∈ ℝ*)
24 simpr 488 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ≠ -∞)
25 pnfxr 10887 . . . . . . . . . . 11 +∞ ∈ ℝ*
2625a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
27 peano2rem 11145 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ → (𝑅 − 1) ∈ ℝ)
2827rexrd 10883 . . . . . . . . . . . 12 (𝑅 ∈ ℝ → (𝑅 − 1) ∈ ℝ*)
291, 28syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅 − 1) ∈ ℝ*)
3015, 14sseldd 3902 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ*)
31 id 22 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ*𝑋 ∈ ℝ*)
32 1xr 10892 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
3332a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ* → 1 ∈ ℝ*)
3431, 33xaddcld 12891 . . . . . . . . . . . . 13 (𝑋 ∈ ℝ* → (𝑋 +𝑒 1) ∈ ℝ*)
3530, 34syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 +𝑒 1) ∈ ℝ*)
36 infleinflem2.l . . . . . . . . . . . 12 (𝜑𝑍 ≤ (𝑋 +𝑒 1))
37 infleinflem2.t . . . . . . . . . . . . 13 (𝜑𝑋 < (𝑅 − 2))
38 oveq1 7220 . . . . . . . . . . . . . . . . . . 19 (𝑋 = -∞ → (𝑋 +𝑒 1) = (-∞ +𝑒 1))
39 1re 10833 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
40 renepnf 10881 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ ℝ → 1 ≠ +∞)
4139, 40ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 1 ≠ +∞
42 xaddmnf2 12819 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
4332, 41, 42mp2an 692 . . . . . . . . . . . . . . . . . . . 20 (-∞ +𝑒 1) = -∞
4443a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑋 = -∞ → (-∞ +𝑒 1) = -∞)
4538, 44eqtrd 2777 . . . . . . . . . . . . . . . . . 18 (𝑋 = -∞ → (𝑋 +𝑒 1) = -∞)
4645adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) = -∞)
4727mnfltd 12716 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ → -∞ < (𝑅 − 1))
4847adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → -∞ < (𝑅 − 1))
4946, 48eqbrtrd 5075 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
5049adantlr 715 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*) ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
51503adantl3 1170 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
52 simpl 486 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → (𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)))
53 simpl2 1194 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ∈ ℝ*)
54 neqne 2948 . . . . . . . . . . . . . . . . 17 𝑋 = -∞ → 𝑋 ≠ -∞)
5554adantl 485 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ≠ -∞)
56 simp2 1139 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 ∈ ℝ*)
5725a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → +∞ ∈ ℝ*)
58 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ)
59 2re 11904 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
6059a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ → 2 ∈ ℝ)
6158, 60resubcld 11260 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → (𝑅 − 2) ∈ ℝ)
6261rexrd 10883 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅 − 2) ∈ ℝ*)
63623ad2ant1 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑅 − 2) ∈ ℝ*)
64 simp3 1140 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 < (𝑅 − 2))
6561ltpnfd 12713 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅 − 2) < +∞)
66653ad2ant1 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑅 − 2) < +∞)
6756, 63, 57, 64, 66xrlttrd 12749 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 < +∞)
6856, 57, 67xrltned 42569 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 ≠ +∞)
6968adantr 484 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ≠ +∞)
7053, 55, 69xrred 42577 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ∈ ℝ)
71 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ)
7271ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 𝑋 ∈ ℝ)
7361ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑅 − 2) ∈ ℝ)
74 1red 10834 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℝ → 1 ∈ ℝ)
7572, 74syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 1 ∈ ℝ)
76 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 𝑋 < (𝑅 − 2))
7772, 73, 75, 76ltadd1dd 11443 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 + 1) < ((𝑅 − 2) + 1))
78 recn 10819 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
79 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 𝑅 ∈ ℂ)
80 2cnd 11908 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 2 ∈ ℂ)
81 1cnd 10828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 1 ∈ ℂ)
8279, 80, 81subsubd 11217 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℂ → (𝑅 − (2 − 1)) = ((𝑅 − 2) + 1))
83 2m1e1 11956 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 − 1) = 1
8483oveq2i 7224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 − (2 − 1)) = (𝑅 − 1)
8584a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℂ → (𝑅 − (2 − 1)) = (𝑅 − 1))
8682, 85eqtr3d 2779 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℂ → ((𝑅 − 2) + 1) = (𝑅 − 1))
8778, 86syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → ((𝑅 − 2) + 1) = (𝑅 − 1))
8887ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → ((𝑅 − 2) + 1) = (𝑅 − 1))
8977, 88breqtrd 5079 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 + 1) < (𝑅 − 1))
9071, 74rexaddd 12824 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ ℝ → (𝑋 +𝑒 1) = (𝑋 + 1))
9190breq1d 5063 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℝ → ((𝑋 +𝑒 1) < (𝑅 − 1) ↔ (𝑋 + 1) < (𝑅 − 1)))
9291ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → ((𝑋 +𝑒 1) < (𝑅 − 1) ↔ (𝑋 + 1) < (𝑅 − 1)))
9389, 92mpbird 260 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 +𝑒 1) < (𝑅 − 1))
9493an32s 652 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑋 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
95943adantl2 1169 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ 𝑋 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
9652, 70, 95syl2anc 587 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
9751, 96pm2.61dan 813 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑋 +𝑒 1) < (𝑅 − 1))
981, 30, 37, 97syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑋 +𝑒 1) < (𝑅 − 1))
9922, 35, 29, 36, 98xrlelttrd 12750 . . . . . . . . . . 11 (𝜑𝑍 < (𝑅 − 1))
10027ltpnfd 12713 . . . . . . . . . . . 12 (𝑅 ∈ ℝ → (𝑅 − 1) < +∞)
1011, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅 − 1) < +∞)
10222, 29, 26, 99, 101xrlttrd 12749 . . . . . . . . . 10 (𝜑𝑍 < +∞)
10322, 26, 102xrltned 42569 . . . . . . . . 9 (𝜑𝑍 ≠ +∞)
104103adantr 484 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ≠ +∞)
10523, 24, 104xrred 42577 . . . . . . 7 ((𝜑𝑍 ≠ -∞) → 𝑍 ∈ ℝ)
10636adantr 484 . . . . . . 7 ((𝜑𝑍 ≠ -∞) → 𝑍 ≤ (𝑋 +𝑒 1))
107 simpl3 1195 . . . . . . . . 9 (((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) ∧ 𝑋 = -∞) → 𝑍 ≤ (𝑋 +𝑒 1))
10845adantl 485 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) = -∞)
109 mnflt 12715 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → -∞ < 𝑍)
110109adantr 484 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → -∞ < 𝑍)
111108, 110eqbrtrd 5075 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < 𝑍)
112 mnfxr 10890 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
113108, 112eqeltrdi 2846 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) ∈ ℝ*)
114 rexr 10879 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → 𝑍 ∈ ℝ*)
115114adantr 484 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → 𝑍 ∈ ℝ*)
116113, 115xrltnled 42575 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → ((𝑋 +𝑒 1) < 𝑍 ↔ ¬ 𝑍 ≤ (𝑋 +𝑒 1)))
117111, 116mpbid 235 . . . . . . . . . 10 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → ¬ 𝑍 ≤ (𝑋 +𝑒 1))
1181173ad2antl1 1187 . . . . . . . . 9 (((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) ∧ 𝑋 = -∞) → ¬ 𝑍 ≤ (𝑋 +𝑒 1))
119107, 118pm2.65da 817 . . . . . . . 8 ((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) → ¬ 𝑋 = -∞)
120119neqned 2947 . . . . . . 7 ((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) → 𝑋 ≠ -∞)
121105, 18, 106, 120syl3anc 1373 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ≠ -∞)
1221, 17, 37, 68syl3anc 1373 . . . . . . 7 (𝜑𝑋 ≠ +∞)
123122adantr 484 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ≠ +∞)
12418, 121, 123xrred 42577 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑋 ∈ ℝ)
12537adantr 484 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑋 < (𝑅 − 2))
12612, 124, 125jca31 518 . . . 4 ((𝜑𝑍 ≠ -∞) → ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)))
127 simplr 769 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 ∈ ℝ)
128 simp-4r 784 . . . . . 6 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑋 ∈ ℝ)
12971, 74readdcld 10862 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 + 1) ∈ ℝ)
13090, 129eqeltrd 2838 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 +𝑒 1) ∈ ℝ)
131128, 130syl 17 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → (𝑋 +𝑒 1) ∈ ℝ)
13258ad4antr 732 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑅 ∈ ℝ)
133 simpr 488 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 ≤ (𝑋 +𝑒 1))
134130ad3antlr 731 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) ∈ ℝ)
13527ad3antrrr 730 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑅 − 1) ∈ ℝ)
13658ad3antrrr 730 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → 𝑅 ∈ ℝ)
13793adantr 484 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
138136ltm1d 11764 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑅 − 1) < 𝑅)
139134, 135, 136, 137, 138lttrd 10993 . . . . . 6 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) < 𝑅)
140139adantr 484 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → (𝑋 +𝑒 1) < 𝑅)
141127, 131, 132, 133, 140lelttrd 10990 . . . 4 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 < 𝑅)
142126, 105, 106, 141syl21anc 838 . . 3 ((𝜑𝑍 ≠ -∞) → 𝑍 < 𝑅)
1439, 11, 142syl2anc 587 . 2 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝑍 < 𝑅)
1448, 143pm2.61dan 813 1 (𝜑𝑍 < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wss 3866   class class class wbr 5053  (class class class)co 7213  cc 10727  cr 10728  1c1 10730   + caddc 10732  +∞cpnf 10864  -∞cmnf 10865  *cxr 10866   < clt 10867  cle 10868  cmin 11062  2c2 11885   +𝑒 cxad 12702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-2 11893  df-xadd 12705
This theorem is referenced by:  infleinf  42584
  Copyright terms: Public domain W3C validator