| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version | ||
| Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlenlt 11215 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | con2bid 354 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-le 11190 |
| This theorem is referenced by: xrletri 13089 qextltlem 13138 xralrple 13141 xltadd1 13192 xsubge0 13197 xposdif 13198 xltmul1 13228 ioo0 13307 ico0 13328 ioc0 13329 snunioo 13415 snunioc 13417 difreicc 13421 hashbnd 14277 limsuplt 15421 pcadd 16836 pcadd2 16837 ramubcl 16965 ramlb 16966 leordtvallem1 23073 leordtvallem2 23074 leordtval2 23075 leordtval 23076 lecldbas 23082 blcld 24369 stdbdbl 24381 tmsxpsval2 24403 iocmnfcld 24632 xrsxmet 24674 metdsge 24714 bndth 24833 ovolgelb 25357 ovolunnul 25377 ioombl 25442 volsup2 25482 mbfmax 25526 ismbf3d 25531 itg2seq 25619 itg2monolem2 25628 itg2monolem3 25629 lhop2 25896 mdegleb 25945 deg1ge 25979 deg1add 25984 ig1pdvds 26061 plypf1 26093 radcnvlt1 26303 upgrfi 28994 xrdifh 32676 xrge00 32926 gsumesum 34022 itg2gt0cn 37642 asindmre 37670 dvasin 37671 aks6d1c6lem3 42133 aks6d1c7lem2 42142 iocioodisjd 42281 radcnvrat 44276 supxrgelem 45306 infrpge 45320 xrlexaddrp 45321 xrltnled 45332 xrpnf 45454 gtnelioc 45462 ltnelicc 45468 gtnelicc 45471 snunioo1 45483 eliccnelico 45500 xrgtnelicc 45509 lptioo2 45602 stoweidlem34 46005 fourierdlem20 46098 fouriersw 46202 nltle2tri 47287 iccelpart 47407 |
| Copyright terms: Public domain | W3C validator |