![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version |
Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlenlt 11324 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | con2bid 354 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
3 | 2 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-le 11299 |
This theorem is referenced by: xrletri 13192 qextltlem 13241 xralrple 13244 xltadd1 13295 xsubge0 13300 xposdif 13301 xltmul1 13331 ioo0 13409 ico0 13430 ioc0 13431 snunioo 13515 snunioc 13517 difreicc 13521 hashbnd 14372 limsuplt 15512 pcadd 16923 pcadd2 16924 ramubcl 17052 ramlb 17053 leordtvallem1 23234 leordtvallem2 23235 leordtval2 23236 leordtval 23237 lecldbas 23243 blcld 24534 stdbdbl 24546 tmsxpsval2 24568 iocmnfcld 24805 xrsxmet 24845 metdsge 24885 bndth 25004 ovolgelb 25529 ovolunnul 25549 ioombl 25614 volsup2 25654 mbfmax 25698 ismbf3d 25703 itg2seq 25792 itg2monolem2 25801 itg2monolem3 25802 lhop2 26069 mdegleb 26118 deg1ge 26152 deg1add 26157 ig1pdvds 26234 plypf1 26266 radcnvlt1 26476 upgrfi 29123 xrdifh 32789 xrge00 33000 gsumesum 34040 itg2gt0cn 37662 asindmre 37690 dvasin 37691 aks6d1c6lem3 42154 aks6d1c7lem2 42163 iocioodisjd 42334 radcnvrat 44310 supxrgelem 45287 infrpge 45301 xrlexaddrp 45302 xrltnled 45313 xrpnf 45436 gtnelioc 45444 ltnelicc 45450 gtnelicc 45453 snunioo1 45465 eliccnelico 45482 xrgtnelicc 45491 lptioo2 45587 stoweidlem34 45990 fourierdlem20 46083 fouriersw 46187 nltle2tri 47263 iccelpart 47358 |
Copyright terms: Public domain | W3C validator |