| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version | ||
| Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlenlt 11239 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | con2bid 354 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-le 11214 |
| This theorem is referenced by: xrletri 13113 qextltlem 13162 xralrple 13165 xltadd1 13216 xsubge0 13221 xposdif 13222 xltmul1 13252 ioo0 13331 ico0 13352 ioc0 13353 snunioo 13439 snunioc 13441 difreicc 13445 hashbnd 14301 limsuplt 15445 pcadd 16860 pcadd2 16861 ramubcl 16989 ramlb 16990 leordtvallem1 23097 leordtvallem2 23098 leordtval2 23099 leordtval 23100 lecldbas 23106 blcld 24393 stdbdbl 24405 tmsxpsval2 24427 iocmnfcld 24656 xrsxmet 24698 metdsge 24738 bndth 24857 ovolgelb 25381 ovolunnul 25401 ioombl 25466 volsup2 25506 mbfmax 25550 ismbf3d 25555 itg2seq 25643 itg2monolem2 25652 itg2monolem3 25653 lhop2 25920 mdegleb 25969 deg1ge 26003 deg1add 26008 ig1pdvds 26085 plypf1 26117 radcnvlt1 26327 upgrfi 29018 xrdifh 32703 xrge00 32953 gsumesum 34049 itg2gt0cn 37669 asindmre 37697 dvasin 37698 aks6d1c6lem3 42160 aks6d1c7lem2 42169 iocioodisjd 42308 radcnvrat 44303 supxrgelem 45333 infrpge 45347 xrlexaddrp 45348 xrltnled 45359 xrpnf 45481 gtnelioc 45489 ltnelicc 45495 gtnelicc 45498 snunioo1 45510 eliccnelico 45527 xrgtnelicc 45536 lptioo2 45629 stoweidlem34 46032 fourierdlem20 46125 fouriersw 46229 nltle2tri 47314 iccelpart 47434 |
| Copyright terms: Public domain | W3C validator |