Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version |
Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlenlt 11040 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | con2bid 355 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
3 | 2 | ancoms 459 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-le 11015 |
This theorem is referenced by: xrletri 12887 qextltlem 12936 xralrple 12939 xltadd1 12990 xsubge0 12995 xposdif 12996 xltmul1 13026 ioo0 13104 ico0 13125 ioc0 13126 snunioo 13210 snunioc 13212 difreicc 13216 hashbnd 14050 limsuplt 15188 pcadd 16590 pcadd2 16591 ramubcl 16719 ramlb 16720 leordtvallem1 22361 leordtvallem2 22362 leordtval2 22363 leordtval 22364 lecldbas 22370 blcld 23661 stdbdbl 23673 tmsxpsval2 23695 iocmnfcld 23932 xrsxmet 23972 metdsge 24012 bndth 24121 ovolgelb 24644 ovolunnul 24664 ioombl 24729 volsup2 24769 mbfmax 24813 ismbf3d 24818 itg2seq 24907 itg2monolem2 24916 itg2monolem3 24917 lhop2 25179 mdegleb 25229 deg1ge 25263 deg1add 25268 ig1pdvds 25341 plypf1 25373 radcnvlt1 25577 upgrfi 27461 xrdifh 31101 xrge00 31295 gsumesum 32027 itg2gt0cn 35832 asindmre 35860 dvasin 35861 radcnvrat 41932 supxrgelem 42876 infrpge 42890 xrlexaddrp 42891 xrltnled 42902 xrpnf 43026 gtnelioc 43029 ltnelicc 43035 gtnelicc 43038 snunioo1 43050 eliccnelico 43067 xrgtnelicc 43076 lptioo2 43172 stoweidlem34 43575 fourierdlem20 43668 fouriersw 43772 nltle2tri 44805 iccelpart 44885 |
Copyright terms: Public domain | W3C validator |