| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version | ||
| Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlenlt 11199 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | con2bid 354 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-le 11174 |
| This theorem is referenced by: xrletri 13073 qextltlem 13122 xralrple 13125 xltadd1 13176 xsubge0 13181 xposdif 13182 xltmul1 13212 ioo0 13291 ico0 13312 ioc0 13313 snunioo 13399 snunioc 13401 difreicc 13405 hashbnd 14261 limsuplt 15404 pcadd 16819 pcadd2 16820 ramubcl 16948 ramlb 16949 leordtvallem1 23113 leordtvallem2 23114 leordtval2 23115 leordtval 23116 lecldbas 23122 blcld 24409 stdbdbl 24421 tmsxpsval2 24443 iocmnfcld 24672 xrsxmet 24714 metdsge 24754 bndth 24873 ovolgelb 25397 ovolunnul 25417 ioombl 25482 volsup2 25522 mbfmax 25566 ismbf3d 25571 itg2seq 25659 itg2monolem2 25668 itg2monolem3 25669 lhop2 25936 mdegleb 25985 deg1ge 26019 deg1add 26024 ig1pdvds 26101 plypf1 26133 radcnvlt1 26343 upgrfi 29054 xrdifh 32736 xrge00 32981 gsumesum 34028 itg2gt0cn 37657 asindmre 37685 dvasin 37686 aks6d1c6lem3 42148 aks6d1c7lem2 42157 iocioodisjd 42296 radcnvrat 44290 supxrgelem 45320 infrpge 45334 xrlexaddrp 45335 xrltnled 45346 xrpnf 45468 gtnelioc 45476 ltnelicc 45482 gtnelicc 45485 snunioo1 45497 eliccnelico 45514 xrgtnelicc 45523 lptioo2 45616 stoweidlem34 46019 fourierdlem20 46112 fouriersw 46216 nltle2tri 47301 iccelpart 47421 |
| Copyright terms: Public domain | W3C validator |