![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version |
Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlenlt 10393 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | con2bid 346 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
3 | 2 | ancoms 451 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 class class class wbr 4843 ℝ*cxr 10362 < clt 10363 ≤ cle 10364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-cnv 5320 df-le 10369 |
This theorem is referenced by: xrletri 12233 qextltlem 12282 xralrple 12285 xltadd1 12335 xsubge0 12340 xposdif 12341 xltmul1 12371 ioo0 12449 ico0 12470 ioc0 12471 xrge0neqmnfOLD 12527 snunioo 12552 snunioc 12554 difreicc 12558 hashbnd 13376 limsuplt 14551 pcadd 15926 pcadd2 15927 ramubcl 16055 ramlb 16056 leordtvallem1 21343 leordtvallem2 21344 leordtval2 21345 leordtval 21346 lecldbas 21352 blcld 22638 stdbdbl 22650 tmsxpsval2 22672 iocmnfcld 22900 xrsxmet 22940 metdsge 22980 bndth 23085 ovolgelb 23588 ovolunnul 23608 ioombl 23673 volsup2 23713 mbfmax 23757 ismbf3d 23762 itg2seq 23850 itg2monolem2 23859 itg2monolem3 23860 lhop2 24119 mdegleb 24165 deg1ge 24199 deg1add 24204 ig1pdvds 24277 plypf1 24309 radcnvlt1 24513 upgrfi 26326 xrdifh 30060 xrge00 30202 gsumesum 30637 itg2gt0cn 33953 asindmre 33983 dvasin 33984 radcnvrat 39295 supxrgelem 40297 infrpge 40311 xrlexaddrp 40312 xrltnled 40323 xrpnf 40459 gtnelioc 40460 ltnelicc 40467 gtnelicc 40470 snunioo1 40483 eliccnelico 40500 xrgtnelicc 40509 lptioo2 40607 stoweidlem34 40994 fourierdlem20 41087 fouriersw 41191 nltle2tri 42163 iccelpart 42209 |
Copyright terms: Public domain | W3C validator |