![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version |
Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlenlt 11355 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | con2bid 354 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
3 | 2 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-le 11330 |
This theorem is referenced by: xrletri 13215 qextltlem 13264 xralrple 13267 xltadd1 13318 xsubge0 13323 xposdif 13324 xltmul1 13354 ioo0 13432 ico0 13453 ioc0 13454 snunioo 13538 snunioc 13540 difreicc 13544 hashbnd 14385 limsuplt 15525 pcadd 16936 pcadd2 16937 ramubcl 17065 ramlb 17066 leordtvallem1 23239 leordtvallem2 23240 leordtval2 23241 leordtval 23242 lecldbas 23248 blcld 24539 stdbdbl 24551 tmsxpsval2 24573 iocmnfcld 24810 xrsxmet 24850 metdsge 24890 bndth 25009 ovolgelb 25534 ovolunnul 25554 ioombl 25619 volsup2 25659 mbfmax 25703 ismbf3d 25708 itg2seq 25797 itg2monolem2 25806 itg2monolem3 25807 lhop2 26074 mdegleb 26123 deg1ge 26157 deg1add 26162 ig1pdvds 26239 plypf1 26271 radcnvlt1 26479 upgrfi 29126 xrdifh 32785 xrge00 32998 gsumesum 34023 itg2gt0cn 37635 asindmre 37663 dvasin 37664 aks6d1c6lem3 42129 aks6d1c7lem2 42138 radcnvrat 44283 supxrgelem 45252 infrpge 45266 xrlexaddrp 45267 xrltnled 45278 xrpnf 45401 gtnelioc 45409 ltnelicc 45415 gtnelicc 45418 snunioo1 45430 eliccnelico 45447 xrgtnelicc 45456 lptioo2 45552 stoweidlem34 45955 fourierdlem20 46048 fouriersw 46152 nltle2tri 47228 iccelpart 47307 |
Copyright terms: Public domain | W3C validator |