| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version | ||
| Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlenlt 11177 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | con2bid 354 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5091 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-le 11152 |
| This theorem is referenced by: xrltnled 11180 xrletri 13052 qextltlem 13101 xralrple 13104 xltadd1 13155 xsubge0 13160 xposdif 13161 xltmul1 13191 ioo0 13270 ico0 13291 ioc0 13292 snunioo 13378 snunioc 13380 difreicc 13384 hashbnd 14243 limsuplt 15386 pcadd 16801 pcadd2 16802 ramubcl 16930 ramlb 16931 leordtvallem1 23126 leordtvallem2 23127 leordtval2 23128 leordtval 23129 lecldbas 23135 blcld 24421 stdbdbl 24433 tmsxpsval2 24455 iocmnfcld 24684 xrsxmet 24726 metdsge 24766 bndth 24885 ovolgelb 25409 ovolunnul 25429 ioombl 25494 volsup2 25534 mbfmax 25578 ismbf3d 25583 itg2seq 25671 itg2monolem2 25680 itg2monolem3 25681 lhop2 25948 mdegleb 25997 deg1ge 26031 deg1add 26036 ig1pdvds 26113 plypf1 26145 radcnvlt1 26355 upgrfi 29070 xrdifh 32761 xrge00 32993 gsumesum 34070 itg2gt0cn 37721 asindmre 37749 dvasin 37750 aks6d1c6lem3 42211 aks6d1c7lem2 42220 iocioodisjd 42359 radcnvrat 44353 supxrgelem 45382 infrpge 45396 xrlexaddrp 45397 xrpnf 45529 gtnelioc 45537 ltnelicc 45543 gtnelicc 45546 snunioo1 45558 eliccnelico 45575 xrgtnelicc 45584 lptioo2 45677 stoweidlem34 46078 fourierdlem20 46171 fouriersw 46275 nltle2tri 47350 iccelpart 47470 |
| Copyright terms: Public domain | W3C validator |