| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version | ||
| Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlenlt 11186 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | con2bid 354 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 ℝ*cxr 11154 < clt 11155 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-le 11161 |
| This theorem is referenced by: xrltnled 11189 xrletri 13056 qextltlem 13105 xralrple 13108 xltadd1 13159 xsubge0 13164 xposdif 13165 xltmul1 13195 ioo0 13274 ico0 13295 ioc0 13296 snunioo 13382 snunioc 13384 difreicc 13388 hashbnd 14247 limsuplt 15390 pcadd 16805 pcadd2 16806 ramubcl 16934 ramlb 16935 leordtvallem1 23128 leordtvallem2 23129 leordtval2 23130 leordtval 23131 lecldbas 23137 blcld 24423 stdbdbl 24435 tmsxpsval2 24457 iocmnfcld 24686 xrsxmet 24728 metdsge 24768 bndth 24887 ovolgelb 25411 ovolunnul 25431 ioombl 25496 volsup2 25536 mbfmax 25580 ismbf3d 25585 itg2seq 25673 itg2monolem2 25682 itg2monolem3 25683 lhop2 25950 mdegleb 25999 deg1ge 26033 deg1add 26038 ig1pdvds 26115 plypf1 26147 radcnvlt1 26357 upgrfi 29073 xrdifh 32769 xrge00 33004 gsumesum 34095 itg2gt0cn 37738 asindmre 37766 dvasin 37767 aks6d1c6lem3 42288 aks6d1c7lem2 42297 iocioodisjd 42441 radcnvrat 44434 supxrgelem 45463 infrpge 45477 xrlexaddrp 45478 xrpnf 45610 gtnelioc 45618 ltnelicc 45624 gtnelicc 45627 snunioo1 45639 eliccnelico 45656 xrgtnelicc 45665 lptioo2 45758 stoweidlem34 46159 fourierdlem20 46252 fouriersw 46356 nltle2tri 47440 iccelpart 47560 |
| Copyright terms: Public domain | W3C validator |