| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version | ||
| Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlenlt 11300 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | con2bid 354 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-le 11275 |
| This theorem is referenced by: xrletri 13169 qextltlem 13218 xralrple 13221 xltadd1 13272 xsubge0 13277 xposdif 13278 xltmul1 13308 ioo0 13387 ico0 13408 ioc0 13409 snunioo 13495 snunioc 13497 difreicc 13501 hashbnd 14354 limsuplt 15495 pcadd 16909 pcadd2 16910 ramubcl 17038 ramlb 17039 leordtvallem1 23148 leordtvallem2 23149 leordtval2 23150 leordtval 23151 lecldbas 23157 blcld 24444 stdbdbl 24456 tmsxpsval2 24478 iocmnfcld 24707 xrsxmet 24749 metdsge 24789 bndth 24908 ovolgelb 25433 ovolunnul 25453 ioombl 25518 volsup2 25558 mbfmax 25602 ismbf3d 25607 itg2seq 25695 itg2monolem2 25704 itg2monolem3 25705 lhop2 25972 mdegleb 26021 deg1ge 26055 deg1add 26060 ig1pdvds 26137 plypf1 26169 radcnvlt1 26379 upgrfi 29070 xrdifh 32757 xrge00 33007 gsumesum 34090 itg2gt0cn 37699 asindmre 37727 dvasin 37728 aks6d1c6lem3 42185 aks6d1c7lem2 42194 iocioodisjd 42369 radcnvrat 44338 supxrgelem 45364 infrpge 45378 xrlexaddrp 45379 xrltnled 45390 xrpnf 45512 gtnelioc 45520 ltnelicc 45526 gtnelicc 45529 snunioo1 45541 eliccnelico 45558 xrgtnelicc 45567 lptioo2 45660 stoweidlem34 46063 fourierdlem20 46156 fouriersw 46260 nltle2tri 47342 iccelpart 47447 |
| Copyright terms: Public domain | W3C validator |