| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version | ||
| Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlenlt 11246 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 2 | 1 | con2bid 354 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-le 11221 |
| This theorem is referenced by: xrletri 13120 qextltlem 13169 xralrple 13172 xltadd1 13223 xsubge0 13228 xposdif 13229 xltmul1 13259 ioo0 13338 ico0 13359 ioc0 13360 snunioo 13446 snunioc 13448 difreicc 13452 hashbnd 14308 limsuplt 15452 pcadd 16867 pcadd2 16868 ramubcl 16996 ramlb 16997 leordtvallem1 23104 leordtvallem2 23105 leordtval2 23106 leordtval 23107 lecldbas 23113 blcld 24400 stdbdbl 24412 tmsxpsval2 24434 iocmnfcld 24663 xrsxmet 24705 metdsge 24745 bndth 24864 ovolgelb 25388 ovolunnul 25408 ioombl 25473 volsup2 25513 mbfmax 25557 ismbf3d 25562 itg2seq 25650 itg2monolem2 25659 itg2monolem3 25660 lhop2 25927 mdegleb 25976 deg1ge 26010 deg1add 26015 ig1pdvds 26092 plypf1 26124 radcnvlt1 26334 upgrfi 29025 xrdifh 32710 xrge00 32960 gsumesum 34056 itg2gt0cn 37676 asindmre 37704 dvasin 37705 aks6d1c6lem3 42167 aks6d1c7lem2 42176 iocioodisjd 42315 radcnvrat 44310 supxrgelem 45340 infrpge 45354 xrlexaddrp 45355 xrltnled 45366 xrpnf 45488 gtnelioc 45496 ltnelicc 45502 gtnelicc 45505 snunioo1 45517 eliccnelico 45534 xrgtnelicc 45543 lptioo2 45636 stoweidlem34 46039 fourierdlem20 46132 fouriersw 46236 nltle2tri 47318 iccelpart 47438 |
| Copyright terms: Public domain | W3C validator |