Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version |
Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlenlt 10971 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | con2bid 354 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
3 | 2 | ancoms 458 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-le 10946 |
This theorem is referenced by: xrletri 12816 qextltlem 12865 xralrple 12868 xltadd1 12919 xsubge0 12924 xposdif 12925 xltmul1 12955 ioo0 13033 ico0 13054 ioc0 13055 snunioo 13139 snunioc 13141 difreicc 13145 hashbnd 13978 limsuplt 15116 pcadd 16518 pcadd2 16519 ramubcl 16647 ramlb 16648 leordtvallem1 22269 leordtvallem2 22270 leordtval2 22271 leordtval 22272 lecldbas 22278 blcld 23567 stdbdbl 23579 tmsxpsval2 23601 iocmnfcld 23838 xrsxmet 23878 metdsge 23918 bndth 24027 ovolgelb 24549 ovolunnul 24569 ioombl 24634 volsup2 24674 mbfmax 24718 ismbf3d 24723 itg2seq 24812 itg2monolem2 24821 itg2monolem3 24822 lhop2 25084 mdegleb 25134 deg1ge 25168 deg1add 25173 ig1pdvds 25246 plypf1 25278 radcnvlt1 25482 upgrfi 27364 xrdifh 31003 xrge00 31197 gsumesum 31927 itg2gt0cn 35759 asindmre 35787 dvasin 35788 radcnvrat 41821 supxrgelem 42766 infrpge 42780 xrlexaddrp 42781 xrltnled 42792 xrpnf 42916 gtnelioc 42919 ltnelicc 42925 gtnelicc 42928 snunioo1 42940 eliccnelico 42957 xrgtnelicc 42966 lptioo2 43062 stoweidlem34 43465 fourierdlem20 43558 fouriersw 43662 nltle2tri 44693 iccelpart 44773 |
Copyright terms: Public domain | W3C validator |