![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltnle | Structured version Visualization version GIF version |
Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
xrltnle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlenlt 11145 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | con2bid 355 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
3 | 2 | ancoms 460 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2106 class class class wbr 5096 ℝ*cxr 11113 < clt 11114 ≤ cle 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-br 5097 df-opab 5159 df-xp 5630 df-cnv 5632 df-le 11120 |
This theorem is referenced by: xrletri 12992 qextltlem 13041 xralrple 13044 xltadd1 13095 xsubge0 13100 xposdif 13101 xltmul1 13131 ioo0 13209 ico0 13230 ioc0 13231 snunioo 13315 snunioc 13317 difreicc 13321 hashbnd 14155 limsuplt 15287 pcadd 16687 pcadd2 16688 ramubcl 16816 ramlb 16817 leordtvallem1 22466 leordtvallem2 22467 leordtval2 22468 leordtval 22469 lecldbas 22475 blcld 23766 stdbdbl 23778 tmsxpsval2 23800 iocmnfcld 24037 xrsxmet 24077 metdsge 24117 bndth 24226 ovolgelb 24749 ovolunnul 24769 ioombl 24834 volsup2 24874 mbfmax 24918 ismbf3d 24923 itg2seq 25012 itg2monolem2 25021 itg2monolem3 25022 lhop2 25284 mdegleb 25334 deg1ge 25368 deg1add 25373 ig1pdvds 25446 plypf1 25478 radcnvlt1 25682 upgrfi 27749 xrdifh 31386 xrge00 31580 gsumesum 32323 itg2gt0cn 35988 asindmre 36016 dvasin 36017 radcnvrat 42305 supxrgelem 43263 infrpge 43277 xrlexaddrp 43278 xrltnled 43289 xrpnf 43413 gtnelioc 43417 ltnelicc 43423 gtnelicc 43426 snunioo1 43438 eliccnelico 43455 xrgtnelicc 43464 lptioo2 43560 stoweidlem34 43963 fourierdlem20 44056 fouriersw 44160 nltle2tri 45223 iccelpart 45303 |
Copyright terms: Public domain | W3C validator |