Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrbnd2 Structured version   Visualization version   GIF version

Theorem infxrbnd2 44651
Description: The infimum of a bounded-below set of extended reals is greater than minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
infxrbnd2 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ -∞ < inf(𝐴, ℝ*, < )))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem infxrbnd2
StepHypRef Expression
1 ralnex 3066 . . . 4 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
2 ssel2 3972 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
3 rexr 11264 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4 simpl 482 . . . . . . . . . 10 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → 𝑦 ∈ ℝ*)
5 simpr 484 . . . . . . . . . 10 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
64, 5xrltnled 44645 . . . . . . . . 9 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
72, 3, 6syl2an 595 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
87an32s 649 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
98rexbidva 3170 . . . . . 6 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑦𝐴 ¬ 𝑥𝑦))
10 rexnal 3094 . . . . . 6 (∃𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∀𝑦𝐴 𝑥𝑦)
119, 10bitr2di 288 . . . . 5 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 𝑦 < 𝑥))
1211ralbidva 3169 . . . 4 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥))
131, 12bitr3id 285 . . 3 (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥))
14 infxrunb2 44650 . . 3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞))
15 infxrcl 13318 . . . 4 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
16 ngtmnft 13151 . . . 4 (inf(𝐴, ℝ*, < ) ∈ ℝ* → (inf(𝐴, ℝ*, < ) = -∞ ↔ ¬ -∞ < inf(𝐴, ℝ*, < )))
1715, 16syl 17 . . 3 (𝐴 ⊆ ℝ* → (inf(𝐴, ℝ*, < ) = -∞ ↔ ¬ -∞ < inf(𝐴, ℝ*, < )))
1813, 14, 173bitrd 305 . 2 (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ¬ -∞ < inf(𝐴, ℝ*, < )))
1918con4bid 317 1 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ -∞ < inf(𝐴, ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3055  wrex 3064  wss 3943   class class class wbr 5141  infcinf 9438  cr 11111  -∞cmnf 11250  *cxr 11251   < clt 11252  cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451
This theorem is referenced by:  infleinf  44654
  Copyright terms: Public domain W3C validator