![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrbnd2 | Structured version Visualization version GIF version |
Description: The infimum of a bounded-below set of extended reals is greater than minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
infxrbnd2 | ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ -∞ < inf(𝐴, ℝ*, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3062 | . . . 4 ⊢ (∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | |
2 | ssel2 3967 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) | |
3 | rexr 11290 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
4 | simpl 481 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → 𝑦 ∈ ℝ*) | |
5 | simpr 483 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*) | |
6 | 4, 5 | xrltnled 44808 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
7 | 2, 3, 6 | syl2an 594 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
8 | 7 | an32s 650 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
9 | 8 | rexbidva 3167 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑥 ≤ 𝑦)) |
10 | rexnal 3090 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 ¬ 𝑥 ≤ 𝑦 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | |
11 | 9, 10 | bitr2di 287 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
12 | 11 | ralbidva 3166 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
13 | 1, 12 | bitr3id 284 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
14 | infxrunb2 44813 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞)) | |
15 | infxrcl 13344 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*) | |
16 | ngtmnft 13177 | . . . 4 ⊢ (inf(𝐴, ℝ*, < ) ∈ ℝ* → (inf(𝐴, ℝ*, < ) = -∞ ↔ ¬ -∞ < inf(𝐴, ℝ*, < ))) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (inf(𝐴, ℝ*, < ) = -∞ ↔ ¬ -∞ < inf(𝐴, ℝ*, < ))) |
18 | 13, 14, 17 | 3bitrd 304 | . 2 ⊢ (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ¬ -∞ < inf(𝐴, ℝ*, < ))) |
19 | 18 | con4bid 316 | 1 ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ -∞ < inf(𝐴, ℝ*, < ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∃wrex 3060 ⊆ wss 3939 class class class wbr 5143 infcinf 9464 ℝcr 11137 -∞cmnf 11276 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 |
This theorem is referenced by: infleinf 44817 |
Copyright terms: Public domain | W3C validator |