Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrbnd2 | Structured version Visualization version GIF version |
Description: The infimum of a bounded-below set of extended reals is greater than minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
infxrbnd2 | ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ -∞ < inf(𝐴, ℝ*, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3158 | . . . 4 ⊢ (∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | |
2 | ssel2 3895 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) | |
3 | rexr 10879 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
4 | simpl 486 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → 𝑦 ∈ ℝ*) | |
5 | simpr 488 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*) | |
6 | 4, 5 | xrltnled 42575 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
7 | 2, 3, 6 | syl2an 599 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
8 | 7 | an32s 652 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
9 | 8 | rexbidva 3215 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑥 ≤ 𝑦)) |
10 | rexnal 3160 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 ¬ 𝑥 ≤ 𝑦 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | |
11 | 9, 10 | bitr2di 291 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
12 | 11 | ralbidva 3117 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
13 | 1, 12 | bitr3id 288 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
14 | infxrunb2 42580 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞)) | |
15 | infxrcl 12923 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*) | |
16 | ngtmnft 12756 | . . . 4 ⊢ (inf(𝐴, ℝ*, < ) ∈ ℝ* → (inf(𝐴, ℝ*, < ) = -∞ ↔ ¬ -∞ < inf(𝐴, ℝ*, < ))) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (inf(𝐴, ℝ*, < ) = -∞ ↔ ¬ -∞ < inf(𝐴, ℝ*, < ))) |
18 | 13, 14, 17 | 3bitrd 308 | . 2 ⊢ (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ¬ -∞ < inf(𝐴, ℝ*, < ))) |
19 | 18 | con4bid 320 | 1 ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ -∞ < inf(𝐴, ℝ*, < ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ⊆ wss 3866 class class class wbr 5053 infcinf 9057 ℝcr 10728 -∞cmnf 10865 ℝ*cxr 10866 < clt 10867 ≤ cle 10868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 |
This theorem is referenced by: infleinf 42584 |
Copyright terms: Public domain | W3C validator |