Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lenlteq | Structured version Visualization version GIF version |
Description: 'less than or equal to' but not 'less than' implies 'equal' . (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
lenlteq.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lenlteq.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lenlteq.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
lenlteq.4 | ⊢ (𝜑 → ¬ 𝐴 < 𝐵) |
Ref | Expression |
---|---|
lenlteq | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lenlteq.3 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | lenlteq.4 | . . 3 ⊢ (𝜑 → ¬ 𝐴 < 𝐵) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵)) |
4 | lenlteq.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | lenlteq.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | eqlelt 11135 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) | |
7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) |
8 | 3, 7 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5087 ℝcr 10943 < clt 11082 ≤ cle 11083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-resscn 11001 ax-pre-lttri 11018 ax-pre-lttrn 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 |
This theorem is referenced by: voliooico 43770 voliccico 43777 volico2 44417 |
Copyright terms: Public domain | W3C validator |