Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lenlteq Structured version   Visualization version   GIF version

Theorem lenlteq 45279
Description: 'less than or equal to' but not 'less than' implies 'equal' . (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
lenlteq.1 (𝜑𝐴 ∈ ℝ)
lenlteq.2 (𝜑𝐵 ∈ ℝ)
lenlteq.3 (𝜑𝐴𝐵)
lenlteq.4 (𝜑 → ¬ 𝐴 < 𝐵)
Assertion
Ref Expression
lenlteq (𝜑𝐴 = 𝐵)

Proof of Theorem lenlteq
StepHypRef Expression
1 lenlteq.3 . . 3 (𝜑𝐴𝐵)
2 lenlteq.4 . . 3 (𝜑 → ¬ 𝐴 < 𝐵)
31, 2jca 511 . 2 (𝜑 → (𝐴𝐵 ∧ ¬ 𝐴 < 𝐵))
4 lenlteq.1 . . 3 (𝜑𝐴 ∈ ℝ)
5 lenlteq.2 . . 3 (𝜑𝐵 ∈ ℝ)
6 eqlelt 11377 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 < 𝐵)))
74, 5, 6syl2anc 583 . 2 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 < 𝐵)))
83, 7mpbird 257 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  cr 11183   < clt 11324  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330
This theorem is referenced by:  voliooico  45913  voliccico  45920  volico2  46562
  Copyright terms: Public domain W3C validator