Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnflem Structured version   Visualization version   GIF version

Theorem limsuppnflem 43251
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnflem.j 𝑗𝐹
limsuppnflem.a (𝜑𝐴 ⊆ ℝ)
limsuppnflem.f (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsuppnflem (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsuppnflem
StepHypRef Expression
1 id 22 . . . . . . 7 (𝜑𝜑)
2 imnan 400 . . . . . . . . . . . . . 14 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
32ralbii 3092 . . . . . . . . . . . . 13 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4 ralnex 3167 . . . . . . . . . . . . 13 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
53, 4bitri 274 . . . . . . . . . . . 12 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
65rexbii 3181 . . . . . . . . . . 11 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
7 rexnal 3169 . . . . . . . . . . 11 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
86, 7bitri 274 . . . . . . . . . 10 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
98rexbii 3181 . . . . . . . . 9 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
10 rexnal 3169 . . . . . . . . 9 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
119, 10bitri 274 . . . . . . . 8 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1211biimpri 227 . . . . . . 7 (¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)))
13 simp1 1135 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴))
14 id 22 . . . . . . . . . . . . . . 15 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)))
1514imp 407 . . . . . . . . . . . . . 14 (((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → ¬ 𝑥 ≤ (𝐹𝑗))
16153adant1 1129 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → ¬ 𝑥 ≤ (𝐹𝑗))
17 limsuppnflem.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴⟶ℝ*)
1817ffvelrnda 6961 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1918ad4ant14 749 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
2019adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
21 simpllr 773 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
22 rexr 11021 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2321, 22syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
2423adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
25 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → ¬ 𝑥 ≤ (𝐹𝑗))
2618ad4ant13 748 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
2722ad3antlr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
2826, 27xrltnled 42902 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → ((𝐹𝑗) < 𝑥 ↔ ¬ 𝑥 ≤ (𝐹𝑗)))
2925, 28mpbird 256 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) < 𝑥)
3029adantllr 716 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) < 𝑥)
3120, 24, 30xrltled 12884 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ 𝑥)
3213, 16, 31syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
33323exp 1118 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3433ralimdva 3108 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3534reximdva 3203 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3635reximdva 3203 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3736imp 407 . . . . . . 7 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
381, 12, 37syl2an 596 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
39 reex 10962 . . . . . . . . . . . . . 14 ℝ ∈ V
4039a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
41 limsuppnflem.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℝ)
4240, 41ssexd 5248 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
4317, 42fexd 7103 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
4443limsupcld 43231 . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
4544ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) ∈ ℝ*)
4622ad2antlr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝑥 ∈ ℝ*)
47 pnfxr 11029 . . . . . . . . . 10 +∞ ∈ ℝ*
4847a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → +∞ ∈ ℝ*)
49 limsuppnflem.j . . . . . . . . . 10 𝑗𝐹
5041ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝐴 ⊆ ℝ)
5117ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝐹:𝐴⟶ℝ*)
52 simpr 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
5349, 50, 51, 46, 52limsupbnd1f 43227 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) ≤ 𝑥)
54 ltpnf 12856 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 < +∞)
5554ad2antlr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝑥 < +∞)
5645, 46, 48, 53, 55xrlelttrd 12894 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) < +∞)
5756rexlimdva2 3216 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (lim sup‘𝐹) < +∞))
5857imp 407 . . . . . 6 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) < +∞)
5938, 58syldan 591 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) < +∞)
6059adantlr 712 . . . 4 (((𝜑 ∧ (lim sup‘𝐹) = +∞) ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) < +∞)
61 id 22 . . . . . . . 8 ((lim sup‘𝐹) = +∞ → (lim sup‘𝐹) = +∞)
6247a1i 11 . . . . . . . 8 ((lim sup‘𝐹) = +∞ → +∞ ∈ ℝ*)
6361, 62eqeltrd 2839 . . . . . . 7 ((lim sup‘𝐹) = +∞ → (lim sup‘𝐹) ∈ ℝ*)
6463, 61xreqnltd 42935 . . . . . 6 ((lim sup‘𝐹) = +∞ → ¬ (lim sup‘𝐹) < +∞)
6564adantl 482 . . . . 5 ((𝜑 ∧ (lim sup‘𝐹) = +∞) → ¬ (lim sup‘𝐹) < +∞)
6665adantr 481 . . . 4 (((𝜑 ∧ (lim sup‘𝐹) = +∞) ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ¬ (lim sup‘𝐹) < +∞)
6760, 66condan 815 . . 3 ((𝜑 ∧ (lim sup‘𝐹) = +∞) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
6867ex 413 . 2 (𝜑 → ((lim sup‘𝐹) = +∞ → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
6941adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝐴 ⊆ ℝ)
7017adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝐹:𝐴⟶ℝ*)
71 simpr 485 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
7249, 69, 70, 71limsuppnfd 43243 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) = +∞)
7372ex 413 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → (lim sup‘𝐹) = +∞))
7468, 73impbid 211 1 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  wrex 3065  Vcvv 3432  wss 3887   class class class wbr 5074  wf 6429  cfv 6433  cr 10870  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  lim supclsp 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-ico 13085  df-limsup 15180
This theorem is referenced by:  limsuppnf  43252
  Copyright terms: Public domain W3C validator