Proof of Theorem limsuppnflem
Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . . 7
⊢ (𝜑 → 𝜑) |
2 | | imnan 400 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
3 | 2 | ralbii 3092 |
. . . . . . . . . . . . 13
⊢
(∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑗 ∈ 𝐴 ¬ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
4 | | ralnex 3167 |
. . . . . . . . . . . . 13
⊢
(∀𝑗 ∈
𝐴 ¬ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
5 | 3, 4 | bitri 274 |
. . . . . . . . . . . 12
⊢
(∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
6 | 5 | rexbii 3181 |
. . . . . . . . . . 11
⊢
(∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
7 | | rexnal 3169 |
. . . . . . . . . . 11
⊢
(∃𝑘 ∈
ℝ ¬ ∃𝑗
∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
8 | 6, 7 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
9 | 8 | rexbii 3181 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
ℝ ∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
10 | | rexnal 3169 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
ℝ ¬ ∀𝑘
∈ ℝ ∃𝑗
∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
11 | 9, 10 | bitri 274 |
. . . . . . . 8
⊢
(∃𝑥 ∈
ℝ ∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
12 | 11 | biimpri 227 |
. . . . . . 7
⊢ (¬
∀𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗))) |
13 | | simp1 1135 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑘 ≤ 𝑗) → (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴)) |
14 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) → (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗))) |
15 | 14 | imp 407 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑘 ≤ 𝑗) → ¬ 𝑥 ≤ (𝐹‘𝑗)) |
16 | 15 | 3adant1 1129 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑘 ≤ 𝑗) → ¬ 𝑥 ≤ (𝐹‘𝑗)) |
17 | | limsuppnflem.f |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
18 | 17 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) |
19 | 18 | ad4ant14 749 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) |
20 | 19 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑥 ≤ (𝐹‘𝑗)) → (𝐹‘𝑗) ∈
ℝ*) |
21 | | simpllr 773 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → 𝑥 ∈ ℝ) |
22 | | rexr 11021 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
24 | 23 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ∈ ℝ*) |
25 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑥 ≤ (𝐹‘𝑗)) → ¬ 𝑥 ≤ (𝐹‘𝑗)) |
26 | 18 | ad4ant13 748 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑥 ≤ (𝐹‘𝑗)) → (𝐹‘𝑗) ∈
ℝ*) |
27 | 22 | ad3antlr 728 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ∈ ℝ*) |
28 | 26, 27 | xrltnled 42902 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑥 ≤ (𝐹‘𝑗)) → ((𝐹‘𝑗) < 𝑥 ↔ ¬ 𝑥 ≤ (𝐹‘𝑗))) |
29 | 25, 28 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑥 ≤ (𝐹‘𝑗)) → (𝐹‘𝑗) < 𝑥) |
30 | 29 | adantllr 716 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑥 ≤ (𝐹‘𝑗)) → (𝐹‘𝑗) < 𝑥) |
31 | 20, 24, 30 | xrltled 12884 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑥 ≤ (𝐹‘𝑗)) → (𝐹‘𝑗) ≤ 𝑥) |
32 | 13, 16, 31 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ≤ 𝑥) |
33 | 32 | 3exp 1118 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
34 | 33 | ralimdva 3108 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) → ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
35 | 34 | reximdva 3203 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
36 | 35 | reximdva 3203 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
37 | 36 | imp 407 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗))) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
38 | 1, 12, 37 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
39 | | reex 10962 |
. . . . . . . . . . . . . 14
⊢ ℝ
∈ V |
40 | 39 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℝ ∈
V) |
41 | | limsuppnflem.a |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
42 | 40, 41 | ssexd 5248 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ V) |
43 | 17, 42 | fexd 7103 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ V) |
44 | 43 | limsupcld 43231 |
. . . . . . . . . 10
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) |
45 | 44 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → (lim sup‘𝐹) ∈
ℝ*) |
46 | 22 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → 𝑥 ∈ ℝ*) |
47 | | pnfxr 11029 |
. . . . . . . . . 10
⊢ +∞
∈ ℝ* |
48 | 47 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → +∞ ∈
ℝ*) |
49 | | limsuppnflem.j |
. . . . . . . . . 10
⊢
Ⅎ𝑗𝐹 |
50 | 41 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → 𝐴 ⊆ ℝ) |
51 | 17 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → 𝐹:𝐴⟶ℝ*) |
52 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
53 | 49, 50, 51, 46, 52 | limsupbnd1f 43227 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → (lim sup‘𝐹) ≤ 𝑥) |
54 | | ltpnf 12856 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) |
55 | 54 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → 𝑥 < +∞) |
56 | 45, 46, 48, 53, 55 | xrlelttrd 12894 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → (lim sup‘𝐹) < +∞) |
57 | 56 | rexlimdva2 3216 |
. . . . . . 7
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → (lim sup‘𝐹) < +∞)) |
58 | 57 | imp 407 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → (lim sup‘𝐹) < +∞) |
59 | 38, 58 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (lim sup‘𝐹) < +∞) |
60 | 59 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ (lim sup‘𝐹) = +∞) ∧ ¬
∀𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (lim sup‘𝐹) < +∞) |
61 | | id 22 |
. . . . . . . 8
⊢ ((lim
sup‘𝐹) = +∞
→ (lim sup‘𝐹) =
+∞) |
62 | 47 | a1i 11 |
. . . . . . . 8
⊢ ((lim
sup‘𝐹) = +∞
→ +∞ ∈ ℝ*) |
63 | 61, 62 | eqeltrd 2839 |
. . . . . . 7
⊢ ((lim
sup‘𝐹) = +∞
→ (lim sup‘𝐹)
∈ ℝ*) |
64 | 63, 61 | xreqnltd 42935 |
. . . . . 6
⊢ ((lim
sup‘𝐹) = +∞
→ ¬ (lim sup‘𝐹) < +∞) |
65 | 64 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ (lim sup‘𝐹) = +∞) → ¬ (lim
sup‘𝐹) <
+∞) |
66 | 65 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ (lim sup‘𝐹) = +∞) ∧ ¬
∀𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → ¬ (lim sup‘𝐹) <
+∞) |
67 | 60, 66 | condan 815 |
. . 3
⊢ ((𝜑 ∧ (lim sup‘𝐹) = +∞) →
∀𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
68 | 67 | ex 413 |
. 2
⊢ (𝜑 → ((lim sup‘𝐹) = +∞ →
∀𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
69 | 41 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝐴 ⊆ ℝ) |
70 | 17 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝐹:𝐴⟶ℝ*) |
71 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
72 | 49, 69, 70, 71 | limsuppnfd 43243 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (lim sup‘𝐹) = +∞) |
73 | 72 | ex 413 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → (lim sup‘𝐹) = +∞)) |
74 | 68, 73 | impbid 211 |
1
⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔
∀𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |