![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrnemnf | Structured version Visualization version GIF version |
Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xrnemnf | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.61 1000 | . 2 ⊢ ((((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞)) | |
2 | elxr 13096 | . . . 4 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
3 | df-3or 1089 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞)) | |
4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞)) |
5 | df-ne 2942 | . . 3 ⊢ (𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞) | |
6 | 4, 5 | anbi12i 628 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞)) |
7 | renemnf 11263 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
8 | pnfnemnf 11269 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
9 | neeq1 3004 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞)) | |
10 | 8, 9 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 ≠ -∞) |
11 | 7, 10 | jaoi 856 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → 𝐴 ≠ -∞) |
12 | 11 | neneqd 2946 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → ¬ 𝐴 = -∞) |
13 | 12 | pm4.71i 561 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞)) |
14 | 1, 6, 13 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∨ w3o 1087 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ℝcr 11109 +∞cpnf 11245 -∞cmnf 11246 ℝ*cxr 11247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 |
This theorem is referenced by: xaddnemnf 13215 xaddass 13228 xlesubadd 13242 xrge0nre 13430 xblss2ps 23907 xblss2 23908 nmoix 24246 nmoleub 24248 blcvx 24314 xrge0tsms 24350 metdstri 24367 nmoleub2lem 24630 xrge0tsmsd 32209 esumcvgre 33089 icorempo 36232 xrnmnfpnf 43772 xrred 44075 |
Copyright terms: Public domain | W3C validator |