MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrnemnf Structured version   Visualization version   GIF version

Theorem xrnemnf 13019
Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrnemnf ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))

Proof of Theorem xrnemnf
StepHypRef Expression
1 pm5.61 1002 . 2 ((((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞))
2 elxr 13018 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3 df-3or 1087 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞))
42, 3bitri 275 . . 3 (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞))
5 df-ne 2926 . . 3 (𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞)
64, 5anbi12i 628 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞))
7 renemnf 11164 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
8 pnfnemnf 11170 . . . . . 6 +∞ ≠ -∞
9 neeq1 2987 . . . . . 6 (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞))
108, 9mpbiri 258 . . . . 5 (𝐴 = +∞ → 𝐴 ≠ -∞)
117, 10jaoi 857 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → 𝐴 ≠ -∞)
1211neneqd 2930 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → ¬ 𝐴 = -∞)
1312pm4.71i 559 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞))
141, 6, 133bitr4i 303 1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2925  cr 11008  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153
This theorem is referenced by:  xaddnemnf  13138  xaddass  13151  xlesubadd  13165  xrge0nre  13356  xblss2ps  24287  xblss2  24288  nmoix  24615  nmoleub  24617  blcvx  24684  xrge0tsms  24721  metdstri  24738  nmoleub2lem  25012  xrge0tsmsd  33015  esumcvgre  34058  icorempo  37325  xrnmnfpnf  45061  xrred  45344
  Copyright terms: Public domain W3C validator