MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrnemnf Structured version   Visualization version   GIF version

Theorem xrnemnf 13138
Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrnemnf ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))

Proof of Theorem xrnemnf
StepHypRef Expression
1 pm5.61 1002 . 2 ((((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞))
2 elxr 13137 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3 df-3or 1087 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞))
42, 3bitri 275 . . 3 (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞))
5 df-ne 2934 . . 3 (𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞)
64, 5anbi12i 628 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = -∞))
7 renemnf 11289 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
8 pnfnemnf 11295 . . . . . 6 +∞ ≠ -∞
9 neeq1 2995 . . . . . 6 (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞))
108, 9mpbiri 258 . . . . 5 (𝐴 = +∞ → 𝐴 ≠ -∞)
117, 10jaoi 857 . . . 4 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → 𝐴 ≠ -∞)
1211neneqd 2938 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → ¬ 𝐴 = -∞)
1312pm4.71i 559 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = -∞))
141, 6, 133bitr4i 303 1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2933  cr 11133  +∞cpnf 11271  -∞cmnf 11272  *cxr 11273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278
This theorem is referenced by:  xaddnemnf  13257  xaddass  13270  xlesubadd  13284  xrge0nre  13475  xblss2ps  24345  xblss2  24346  nmoix  24673  nmoleub  24675  blcvx  24742  xrge0tsms  24779  metdstri  24796  nmoleub2lem  25070  xrge0tsmsd  33061  esumcvgre  34127  icorempo  37374  xrnmnfpnf  45074  xrred  45359
  Copyright terms: Public domain W3C validator