Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnrel Structured version   Visualization version   GIF version

Theorem xrnrel 34475
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 32323 with a different symbol, cf. https://github.com/metamath/set.mm/issues/2469. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnrel Rel (𝐴𝐵)

Proof of Theorem xrnrel
StepHypRef Expression
1 xrnss3v 34474 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5266 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 3761 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5257 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 221 1 Rel (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3351  wss 3723   × cxp 5248  Rel wrel 5255  cxrn 34312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-res 5262  df-xrn 34473
This theorem is referenced by:  dfxrn2  34478  elecxrn  34488  inxpxrn  34493  br1cnvxrn2  34494
  Copyright terms: Public domain W3C validator