Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnrel Structured version   Visualization version   GIF version

Theorem xrnrel 38329
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35843 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35843. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnrel Rel (𝐴𝐵)

Proof of Theorem xrnrel
StepHypRef Expression
1 xrnss3v 38328 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5716 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 4018 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5707 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 231 1 Rel (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3488  wss 3976   × cxp 5698  Rel wrel 5705  cxrn 38134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-res 5712  df-xrn 38327
This theorem is referenced by:  dfxrn2  38332  elecxrn  38342  inxpxrn  38351  br1cnvxrn2  38352  disjxrn  38702  disjxrnres5  38703
  Copyright terms: Public domain W3C validator