| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnrel | Structured version Visualization version GIF version | ||
| Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35874 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35874. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| xrnrel | ⊢ Rel (𝐴 ⋉ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnss3v 38361 | . . 3 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) | |
| 2 | xpss 5657 | . . 3 ⊢ (V × (V × V)) ⊆ (V × V) | |
| 3 | 1, 2 | sstri 3959 | . 2 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × V) |
| 4 | df-rel 5648 | . 2 ⊢ (Rel (𝐴 ⋉ 𝐵) ↔ (𝐴 ⋉ 𝐵) ⊆ (V × V)) | |
| 5 | 3, 4 | mpbir 231 | 1 ⊢ Rel (𝐴 ⋉ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ⊆ wss 3917 × cxp 5639 Rel wrel 5646 ⋉ cxrn 38175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-res 5653 df-xrn 38360 |
| This theorem is referenced by: dfxrn2 38365 elecxrn 38379 inxpxrn 38388 br1cnvxrn2 38389 disjxrn 38745 disjxrnres5 38746 |
| Copyright terms: Public domain | W3C validator |