| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnrel | Structured version Visualization version GIF version | ||
| Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35843 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35843. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| xrnrel | ⊢ Rel (𝐴 ⋉ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnss3v 38336 | . . 3 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) | |
| 2 | xpss 5670 | . . 3 ⊢ (V × (V × V)) ⊆ (V × V) | |
| 3 | 1, 2 | sstri 3968 | . 2 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × V) |
| 4 | df-rel 5661 | . 2 ⊢ (Rel (𝐴 ⋉ 𝐵) ↔ (𝐴 ⋉ 𝐵) ⊆ (V × V)) | |
| 5 | 3, 4 | mpbir 231 | 1 ⊢ Rel (𝐴 ⋉ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ⊆ wss 3926 × cxp 5652 Rel wrel 5659 ⋉ cxrn 38144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-res 5666 df-xrn 38335 |
| This theorem is referenced by: dfxrn2 38340 elecxrn 38350 inxpxrn 38359 br1cnvxrn2 38360 disjxrn 38710 disjxrnres5 38711 |
| Copyright terms: Public domain | W3C validator |