| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnrel | Structured version Visualization version GIF version | ||
| Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35912 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35912. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| xrnrel | ⊢ Rel (𝐴 ⋉ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnss3v 38399 | . . 3 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) | |
| 2 | xpss 5632 | . . 3 ⊢ (V × (V × V)) ⊆ (V × V) | |
| 3 | 1, 2 | sstri 3944 | . 2 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × V) |
| 4 | df-rel 5623 | . 2 ⊢ (Rel (𝐴 ⋉ 𝐵) ↔ (𝐴 ⋉ 𝐵) ⊆ (V × V)) | |
| 5 | 3, 4 | mpbir 231 | 1 ⊢ Rel (𝐴 ⋉ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ⊆ wss 3902 × cxp 5614 Rel wrel 5621 ⋉ cxrn 38213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-res 5628 df-xrn 38398 |
| This theorem is referenced by: dfxrn2 38403 elecxrn 38417 inxpxrn 38426 br1cnvxrn2 38427 disjxrn 38783 disjxrnres5 38784 |
| Copyright terms: Public domain | W3C validator |