Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnrel Structured version   Visualization version   GIF version

Theorem xrnrel 38340
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35852 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35852. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnrel Rel (𝐴𝐵)

Proof of Theorem xrnrel
StepHypRef Expression
1 xrnss3v 38339 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5639 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 3947 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5630 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 231 1 Rel (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3438  wss 3905   × cxp 5621  Rel wrel 5628  cxrn 38153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-res 5635  df-xrn 38338
This theorem is referenced by:  dfxrn2  38343  elecxrn  38357  inxpxrn  38366  br1cnvxrn2  38367  disjxrn  38723  disjxrnres5  38724
  Copyright terms: Public domain W3C validator