Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnrel | Structured version Visualization version GIF version |
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 33756 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 33756. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
xrnrel | ⊢ Rel (𝐴 ⋉ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnss3v 36090 | . . 3 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) | |
2 | xpss 5543 | . . 3 ⊢ (V × (V × V)) ⊆ (V × V) | |
3 | 1, 2 | sstri 3903 | . 2 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × V) |
4 | df-rel 5534 | . 2 ⊢ (Rel (𝐴 ⋉ 𝐵) ↔ (𝐴 ⋉ 𝐵) ⊆ (V × V)) | |
5 | 3, 4 | mpbir 234 | 1 ⊢ Rel (𝐴 ⋉ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3409 ⊆ wss 3860 × cxp 5525 Rel wrel 5532 ⋉ cxrn 35918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 df-opab 5098 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-res 5539 df-xrn 36089 |
This theorem is referenced by: dfxrn2 36094 elecxrn 36104 inxpxrn 36109 br1cnvxrn2 36110 disjxrn 36443 |
Copyright terms: Public domain | W3C validator |