Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnrel Structured version   Visualization version   GIF version

Theorem xrnrel 38355
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35867 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35867. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnrel Rel (𝐴𝐵)

Proof of Theorem xrnrel
StepHypRef Expression
1 xrnss3v 38354 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5654 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 3956 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5645 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 231 1 Rel (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3447  wss 3914   × cxp 5636  Rel wrel 5643  cxrn 38168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-res 5650  df-xrn 38353
This theorem is referenced by:  dfxrn2  38358  elecxrn  38372  inxpxrn  38381  br1cnvxrn2  38382  disjxrn  38738  disjxrnres5  38739
  Copyright terms: Public domain W3C validator