Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnrel Structured version   Visualization version   GIF version

Theorem xrnrel 38354
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35860 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35860. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnrel Rel (𝐴𝐵)

Proof of Theorem xrnrel
StepHypRef Expression
1 xrnss3v 38353 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5704 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 4004 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5695 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 231 1 Rel (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3477  wss 3962   × cxp 5686  Rel wrel 5693  cxrn 38160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-res 5700  df-xrn 38352
This theorem is referenced by:  dfxrn2  38357  elecxrn  38367  inxpxrn  38376  br1cnvxrn2  38377  disjxrn  38727  disjxrnres5  38728
  Copyright terms: Public domain W3C validator