Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnrel Structured version   Visualization version   GIF version

Theorem xrnrel 38426
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35942 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35942. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnrel Rel (𝐴𝐵)

Proof of Theorem xrnrel
StepHypRef Expression
1 xrnss3v 38425 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5635 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 3940 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5626 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 231 1 Rel (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3437  wss 3898   × cxp 5617  Rel wrel 5624  cxrn 38234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-res 5631  df-xrn 38424
This theorem is referenced by:  dfxrn2  38429  elecxrn  38449  inxpxrn  38462  br1cnvxrn2  38463  disjxrn  38864  disjxrnres5  38865
  Copyright terms: Public domain W3C validator