Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnrel Structured version   Visualization version   GIF version

Theorem xrnrel 38400
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35912 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35912. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnrel Rel (𝐴𝐵)

Proof of Theorem xrnrel
StepHypRef Expression
1 xrnss3v 38399 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5632 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 3944 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5623 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 231 1 Rel (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  wss 3902   × cxp 5614  Rel wrel 5621  cxrn 38213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-res 5628  df-xrn 38398
This theorem is referenced by:  dfxrn2  38403  elecxrn  38417  inxpxrn  38426  br1cnvxrn2  38427  disjxrn  38783  disjxrnres5  38784
  Copyright terms: Public domain W3C validator