![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnrel | Structured version Visualization version GIF version |
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35860 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35860. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
xrnrel | ⊢ Rel (𝐴 ⋉ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnss3v 38353 | . . 3 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) | |
2 | xpss 5704 | . . 3 ⊢ (V × (V × V)) ⊆ (V × V) | |
3 | 1, 2 | sstri 4004 | . 2 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × V) |
4 | df-rel 5695 | . 2 ⊢ (Rel (𝐴 ⋉ 𝐵) ↔ (𝐴 ⋉ 𝐵) ⊆ (V × V)) | |
5 | 3, 4 | mpbir 231 | 1 ⊢ Rel (𝐴 ⋉ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3477 ⊆ wss 3962 × cxp 5686 Rel wrel 5693 ⋉ cxrn 38160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-res 5700 df-xrn 38352 |
This theorem is referenced by: dfxrn2 38357 elecxrn 38367 inxpxrn 38376 br1cnvxrn2 38377 disjxrn 38727 disjxrnres5 38728 |
Copyright terms: Public domain | W3C validator |