Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnrel Structured version   Visualization version   GIF version

Theorem xrnrel 36430
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 34108 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 34108. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnrel Rel (𝐴𝐵)

Proof of Theorem xrnrel
StepHypRef Expression
1 xrnss3v 36429 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5596 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 3926 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5587 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 230 1 Rel (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3422  wss 3883   × cxp 5578  Rel wrel 5585  cxrn 36259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-res 5592  df-xrn 36428
This theorem is referenced by:  dfxrn2  36433  elecxrn  36443  inxpxrn  36448  br1cnvxrn2  36449  disjxrn  36782
  Copyright terms: Public domain W3C validator