Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnrel Structured version   Visualization version   GIF version

Theorem xrnrel 38337
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35843 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35843. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnrel Rel (𝐴𝐵)

Proof of Theorem xrnrel
StepHypRef Expression
1 xrnss3v 38336 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5670 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 3968 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5661 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 231 1 Rel (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3459  wss 3926   × cxp 5652  Rel wrel 5659  cxrn 38144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-res 5666  df-xrn 38335
This theorem is referenced by:  dfxrn2  38340  elecxrn  38350  inxpxrn  38359  br1cnvxrn2  38360  disjxrn  38710  disjxrnres5  38711
  Copyright terms: Public domain W3C validator