Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnrel Structured version   Visualization version   GIF version

Theorem xrnrel 37707
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35321 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35321. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnrel Rel (𝐴𝐵)

Proof of Theorem xrnrel
StepHypRef Expression
1 xrnss3v 37706 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5692 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 3991 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5683 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 230 1 Rel (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3473  wss 3948   × cxp 5674  Rel wrel 5681  cxrn 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-res 5688  df-xrn 37705
This theorem is referenced by:  dfxrn2  37710  elecxrn  37720  inxpxrn  37729  br1cnvxrn2  37730  disjxrn  38080  disjxrnres5  38081
  Copyright terms: Public domain W3C validator