Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnrel | Structured version Visualization version GIF version |
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 34209 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 34209. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
xrnrel | ⊢ Rel (𝐴 ⋉ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnss3v 36528 | . . 3 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) | |
2 | xpss 5607 | . . 3 ⊢ (V × (V × V)) ⊆ (V × V) | |
3 | 1, 2 | sstri 3932 | . 2 ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × V) |
4 | df-rel 5598 | . 2 ⊢ (Rel (𝐴 ⋉ 𝐵) ↔ (𝐴 ⋉ 𝐵) ⊆ (V × V)) | |
5 | 3, 4 | mpbir 230 | 1 ⊢ Rel (𝐴 ⋉ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3434 ⊆ wss 3889 × cxp 5589 Rel wrel 5596 ⋉ cxrn 36360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-br 5078 df-opab 5140 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-res 5603 df-xrn 36527 |
This theorem is referenced by: dfxrn2 36532 elecxrn 36542 inxpxrn 36547 br1cnvxrn2 36548 disjxrn 36881 |
Copyright terms: Public domain | W3C validator |