Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnrel Structured version   Visualization version   GIF version

Theorem xrnrel 38362
Description: A range Cartesian product is a relation. This is Scott Fenton's txprel 35874 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35874. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
xrnrel Rel (𝐴𝐵)

Proof of Theorem xrnrel
StepHypRef Expression
1 xrnss3v 38361 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5657 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 3959 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5648 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 231 1 Rel (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3450  wss 3917   × cxp 5639  Rel wrel 5646  cxrn 38175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-res 5653  df-xrn 38360
This theorem is referenced by:  dfxrn2  38365  elecxrn  38379  inxpxrn  38388  br1cnvxrn2  38389  disjxrn  38745  disjxrnres5  38746
  Copyright terms: Public domain W3C validator