Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjxrn Structured version   Visualization version   GIF version

Theorem disjxrn 37611
Description: Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
disjxrn ( Disj (𝑅𝑆) ↔ ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )

Proof of Theorem disjxrn
StepHypRef Expression
1 xrnrel 37238 . . 3 Rel (𝑅𝑆)
2 dfdisjALTV2 37579 . . 3 ( Disj (𝑅𝑆) ↔ ( ≀ (𝑅𝑆) ⊆ I ∧ Rel (𝑅𝑆)))
31, 2mpbiran2 708 . 2 ( Disj (𝑅𝑆) ↔ ≀ (𝑅𝑆) ⊆ I )
4 1cosscnvxrn 37340 . . 3 (𝑅𝑆) = ( ≀ 𝑅 ∩ ≀ 𝑆)
54sseq1i 4010 . 2 ( ≀ (𝑅𝑆) ⊆ I ↔ ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
63, 5bitri 274 1 ( Disj (𝑅𝑆) ↔ ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
Colors of variables: wff setvar class
Syntax hints:  wb 205  cin 3947  wss 3948   I cid 5573  ccnv 5675  Rel wrel 5681  cxrn 37037  ccoss 37038   Disj wdisjALTV 37072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7974  df-2nd 7975  df-ec 8704  df-xrn 37236  df-coss 37276  df-cnvrefrel 37392  df-disjALTV 37570
This theorem is referenced by:  disjorimxrn  37613
  Copyright terms: Public domain W3C validator