Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjxrn Structured version   Visualization version   GIF version

Theorem disjxrn 38702
Description: Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
disjxrn ( Disj (𝑅𝑆) ↔ ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )

Proof of Theorem disjxrn
StepHypRef Expression
1 xrnrel 38329 . . 3 Rel (𝑅𝑆)
2 dfdisjALTV2 38670 . . 3 ( Disj (𝑅𝑆) ↔ ( ≀ (𝑅𝑆) ⊆ I ∧ Rel (𝑅𝑆)))
31, 2mpbiran2 709 . 2 ( Disj (𝑅𝑆) ↔ ≀ (𝑅𝑆) ⊆ I )
4 1cosscnvxrn 38431 . . 3 (𝑅𝑆) = ( ≀ 𝑅 ∩ ≀ 𝑆)
54sseq1i 4037 . 2 ( ≀ (𝑅𝑆) ⊆ I ↔ ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
63, 5bitri 275 1 ( Disj (𝑅𝑆) ↔ ( ≀ 𝑅 ∩ ≀ 𝑆) ⊆ I )
Colors of variables: wff setvar class
Syntax hints:  wb 206  cin 3975  wss 3976   I cid 5592  ccnv 5699  Rel wrel 5705  cxrn 38134  ccoss 38135   Disj wdisjALTV 38169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-ec 8765  df-xrn 38327  df-coss 38367  df-cnvrefrel 38483  df-disjALTV 38661
This theorem is referenced by:  disjorimxrn  38704
  Copyright terms: Public domain W3C validator