Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxrn | Structured version Visualization version GIF version |
Description: Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
Ref | Expression |
---|---|
disjxrn | ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnrel 36482 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
2 | dfdisjALTV2 36804 | . . 3 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ∧ Rel (𝑅 ⋉ 𝑆))) | |
3 | 1, 2 | mpbiran2 706 | . 2 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ) |
4 | 1cosscnvxrn 36572 | . . 3 ⊢ ≀ ◡(𝑅 ⋉ 𝑆) = ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) | |
5 | 4 | sseq1i 3953 | . 2 ⊢ ( ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
6 | 3, 5 | bitri 274 | 1 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∩ cin 3890 ⊆ wss 3891 I cid 5487 ◡ccnv 5587 Rel wrel 5593 ⋉ cxrn 36311 ≀ ccoss 36312 Disj wdisjALTV 36346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fo 6436 df-fv 6438 df-1st 7817 df-2nd 7818 df-ec 8474 df-xrn 36480 df-coss 36516 df-cnvrefrel 36622 df-disjALTV 36795 |
This theorem is referenced by: disjorimxrn 36835 |
Copyright terms: Public domain | W3C validator |