| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxrn | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjxrn | ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnrel 38412 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
| 2 | dfdisjALTV2 38818 | . . 3 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ∧ Rel (𝑅 ⋉ 𝑆))) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ) |
| 4 | 1cosscnvxrn 38583 | . . 3 ⊢ ≀ ◡(𝑅 ⋉ 𝑆) = ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) | |
| 5 | 4 | sseq1i 3958 | . 2 ⊢ ( ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
| 6 | 3, 5 | bitri 275 | 1 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∩ cin 3896 ⊆ wss 3897 I cid 5513 ◡ccnv 5618 Rel wrel 5624 ⋉ cxrn 38220 ≀ ccoss 38228 Disj wdisjALTV 38262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fo 6493 df-fv 6495 df-1st 7927 df-2nd 7928 df-ec 8630 df-xrn 38410 df-coss 38519 df-cnvrefrel 38625 df-disjALTV 38809 |
| This theorem is referenced by: disjorimxrn 38852 |
| Copyright terms: Public domain | W3C validator |