| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxrn | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjxrn | ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnrel 38361 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
| 2 | dfdisjALTV2 38712 | . . 3 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ∧ Rel (𝑅 ⋉ 𝑆))) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ) |
| 4 | 1cosscnvxrn 38472 | . . 3 ⊢ ≀ ◡(𝑅 ⋉ 𝑆) = ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) | |
| 5 | 4 | sseq1i 3964 | . 2 ⊢ ( ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
| 6 | 3, 5 | bitri 275 | 1 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∩ cin 3902 ⊆ wss 3903 I cid 5513 ◡ccnv 5618 Rel wrel 5624 ⋉ cxrn 38174 ≀ ccoss 38175 Disj wdisjALTV 38209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-1st 7924 df-2nd 7925 df-ec 8627 df-xrn 38359 df-coss 38408 df-cnvrefrel 38524 df-disjALTV 38703 |
| This theorem is referenced by: disjorimxrn 38746 |
| Copyright terms: Public domain | W3C validator |