| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjxrn | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjxrn | ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnrel 38362 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
| 2 | dfdisjALTV2 38713 | . . 3 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ∧ Rel (𝑅 ⋉ 𝑆))) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ) |
| 4 | 1cosscnvxrn 38473 | . . 3 ⊢ ≀ ◡(𝑅 ⋉ 𝑆) = ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) | |
| 5 | 4 | sseq1i 3978 | . 2 ⊢ ( ≀ ◡(𝑅 ⋉ 𝑆) ⊆ I ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
| 6 | 3, 5 | bitri 275 | 1 ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∩ cin 3916 ⊆ wss 3917 I cid 5535 ◡ccnv 5640 Rel wrel 5646 ⋉ cxrn 38175 ≀ ccoss 38176 Disj wdisjALTV 38210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-ec 8676 df-xrn 38360 df-coss 38409 df-cnvrefrel 38525 df-disjALTV 38704 |
| This theorem is referenced by: disjorimxrn 38747 |
| Copyright terms: Public domain | W3C validator |