![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvxrn2 | Structured version Visualization version GIF version |
Description: The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021.) |
Ref | Expression |
---|---|
br1cnvxrn2 | ⊢ (𝐵 ∈ 𝑉 → (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnrel 38354 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
2 | 1 | relbrcnv 6127 | . 2 ⊢ (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ 𝐵(𝑅 ⋉ 𝑆)𝐴) |
3 | brxrn2 38356 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵(𝑅 ⋉ 𝑆)𝐴 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) | |
4 | 2, 3 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1536 ∃wex 1775 ∈ wcel 2105 〈cop 4636 class class class wbr 5147 ◡ccnv 5687 ⋉ cxrn 38160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fo 6568 df-fv 6570 df-1st 8012 df-2nd 8013 df-xrn 38352 |
This theorem is referenced by: elec1cnvxrn2 38378 |
Copyright terms: Public domain | W3C validator |