Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvxrn2 | Structured version Visualization version GIF version |
Description: The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021.) |
Ref | Expression |
---|---|
br1cnvxrn2 | ⊢ (𝐵 ∈ 𝑉 → (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnrel 36126 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
2 | 1 | relbrcnv 5944 | . 2 ⊢ (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ 𝐵(𝑅 ⋉ 𝑆)𝐴) |
3 | brxrn2 36128 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵(𝑅 ⋉ 𝑆)𝐴 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) | |
4 | 2, 3 | syl5bb 286 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1088 = wceq 1542 ∃wex 1786 ∈ wcel 2114 〈cop 4522 class class class wbr 5030 ◡ccnv 5524 ⋉ cxrn 35955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fo 6345 df-fv 6347 df-1st 7714 df-2nd 7715 df-xrn 36124 |
This theorem is referenced by: elec1cnvxrn2 36146 |
Copyright terms: Public domain | W3C validator |