| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvxrn2 | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021.) |
| Ref | Expression |
|---|---|
| br1cnvxrn2 | ⊢ (𝐵 ∈ 𝑉 → (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnrel 38374 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
| 2 | 1 | relbrcnv 6125 | . 2 ⊢ (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ 𝐵(𝑅 ⋉ 𝑆)𝐴) |
| 3 | brxrn2 38376 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵(𝑅 ⋉ 𝑆)𝐴 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) | |
| 4 | 2, 3 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1540 ∃wex 1779 ∈ wcel 2108 〈cop 4632 class class class wbr 5143 ◡ccnv 5684 ⋉ cxrn 38181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fo 6567 df-fv 6569 df-1st 8014 df-2nd 8015 df-xrn 38372 |
| This theorem is referenced by: elec1cnvxrn2 38398 |
| Copyright terms: Public domain | W3C validator |