Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfcndun | Structured version Visualization version GIF version |
Description: Axiom of Union ax-un 7566, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
zfcndun | ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axunnd 10283 | . 2 ⊢ ∃𝑦∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
2 | elequ2 2123 | . . . . . . 7 ⊢ (𝑤 = 𝑦 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦)) | |
3 | elequ1 2115 | . . . . . . 7 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
4 | 2, 3 | anbi12d 630 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥))) |
5 | 4 | cbvexvw 2041 | . . . . 5 ⊢ (∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)) |
6 | 5 | imbi1i 349 | . . . 4 ⊢ ((∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ (∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
7 | 6 | albii 1823 | . . 3 ⊢ (∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
8 | 7 | exbii 1851 | . 2 ⊢ (∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
9 | 1, 8 | mpbir 230 | 1 ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-fr 5535 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |