MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndun Structured version   Visualization version   GIF version

Theorem zfcndun 10302
Description: Axiom of Union ax-un 7566, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
zfcndun 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem zfcndun
StepHypRef Expression
1 axunnd 10283 . 2 𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦)
2 elequ2 2123 . . . . . . 7 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
3 elequ1 2115 . . . . . . 7 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
42, 3anbi12d 630 . . . . . 6 (𝑤 = 𝑦 → ((𝑧𝑤𝑤𝑥) ↔ (𝑧𝑦𝑦𝑥)))
54cbvexvw 2041 . . . . 5 (∃𝑤(𝑧𝑤𝑤𝑥) ↔ ∃𝑦(𝑧𝑦𝑦𝑥))
65imbi1i 349 . . . 4 ((∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦) ↔ (∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
76albii 1823 . . 3 (∀𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦) ↔ ∀𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
87exbii 1851 . 2 (∃𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦) ↔ ∃𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
91, 8mpbir 230 1 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-fr 5535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator