MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndun Structured version   Visualization version   GIF version

Theorem zfcndun 10627
Description: Axiom of Union ax-un 7727, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
zfcndun 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem zfcndun
StepHypRef Expression
1 axunnd 10608 . 2 𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦)
2 elequ2 2123 . . . . . . 7 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
3 elequ1 2115 . . . . . . 7 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
42, 3anbi12d 632 . . . . . 6 (𝑤 = 𝑦 → ((𝑧𝑤𝑤𝑥) ↔ (𝑧𝑦𝑦𝑥)))
54cbvexvw 2036 . . . . 5 (∃𝑤(𝑧𝑤𝑤𝑥) ↔ ∃𝑦(𝑧𝑦𝑦𝑥))
65imbi1i 349 . . . 4 ((∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦) ↔ (∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
76albii 1819 . . 3 (∀𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦) ↔ ∀𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
87exbii 1848 . 2 (∃𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦) ↔ ∃𝑦𝑧(∃𝑦(𝑧𝑦𝑦𝑥) → 𝑧𝑦))
91, 8mpbir 231 1 𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-13 2376  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727  ax-reg 9604
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-eprel 5553  df-fr 5606
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator