NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  enprmaplem4 GIF version

Theorem enprmaplem4 6080
Description: Lemma for enprmap 6083. More stratification condition setup. (Contributed by SF, 3-Mar-2015.)
Hypotheses
Ref Expression
enprmaplem4.1 R = (u B if(u p, x, y))
enprmaplem4.2 B V
Assertion
Ref Expression
enprmaplem4 R V
Distinct variable groups:   u,B   u,p   x,u   y,u
Allowed substitution hints:   B(x,y,p)   R(x,y,u,p)

Proof of Theorem enprmaplem4
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 enprmaplem4.1 . . 3 R = (u B if(u p, x, y))
2 elun 3221 . . . . . 6 (u, {z} ((p × 1x) ∪ ( ∼ p × 1y)) ↔ (u, {z} (p × 1x) u, {z} ( ∼ p × 1y)))
3 opelxp 4812 . . . . . . . 8 (u, {z} (p × 1x) ↔ (u p {z} 1x))
4 snelpw1 4147 . . . . . . . . 9 ({z} 1xz x)
54anbi2i 675 . . . . . . . 8 ((u p {z} 1x) ↔ (u p z x))
63, 5bitri 240 . . . . . . 7 (u, {z} (p × 1x) ↔ (u p z x))
7 opelxp 4812 . . . . . . . 8 (u, {z} ( ∼ p × 1y) ↔ (u p {z} 1y))
8 vex 2863 . . . . . . . . . 10 u V
98elcompl 3226 . . . . . . . . 9 (u p ↔ ¬ u p)
10 snelpw1 4147 . . . . . . . . 9 ({z} 1yz y)
119, 10anbi12i 678 . . . . . . . 8 ((u p {z} 1y) ↔ (¬ u p z y))
127, 11bitri 240 . . . . . . 7 (u, {z} ( ∼ p × 1y) ↔ (¬ u p z y))
136, 12orbi12i 507 . . . . . 6 ((u, {z} (p × 1x) u, {z} ( ∼ p × 1y)) ↔ ((u p z x) u p z y)))
142, 13bitri 240 . . . . 5 (u, {z} ((p × 1x) ∪ ( ∼ p × 1y)) ↔ ((u p z x) u p z y)))
15 opelcnv 4894 . . . . 5 ({z}, u ((p × 1x) ∪ ( ∼ p × 1y)) ↔ u, {z} ((p × 1x) ∪ ( ∼ p × 1y)))
16 elif 3697 . . . . 5 (z if(u p, x, y) ↔ ((u p z x) u p z y)))
1714, 15, 163bitr4i 268 . . . 4 ({z}, u ((p × 1x) ∪ ( ∼ p × 1y)) ↔ z if(u p, x, y))
1817releqmpt 5809 . . 3 ((B × V) ∩ ∼ (( Ins3 S Ins2 ((p × 1x) ∪ ( ∼ p × 1y))) “ 1c)) = (u B if(u p, x, y))
191, 18eqtr4i 2376 . 2 R = ((B × V) ∩ ∼ (( Ins3 S Ins2 ((p × 1x) ∪ ( ∼ p × 1y))) “ 1c))
20 enprmaplem4.2 . . 3 B V
21 vex 2863 . . . . . 6 p V
22 vex 2863 . . . . . . 7 x V
2322pw1ex 4304 . . . . . 6 1x V
2421, 23xpex 5116 . . . . 5 (p × 1x) V
2521complex 4105 . . . . . 6 p V
26 vex 2863 . . . . . . 7 y V
2726pw1ex 4304 . . . . . 6 1y V
2825, 27xpex 5116 . . . . 5 ( ∼ p × 1y) V
2924, 28unex 4107 . . . 4 ((p × 1x) ∪ ( ∼ p × 1y)) V
3029cnvex 5103 . . 3 ((p × 1x) ∪ ( ∼ p × 1y)) V
3120, 30mptexlem 5811 . 2 ((B × V) ∩ ∼ (( Ins3 S Ins2 ((p × 1x) ∪ ( ∼ p × 1y))) “ 1c)) V
3219, 31eqeltri 2423 1 R V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wo 357   wa 358   = wceq 1642   wcel 1710  Vcvv 2860  ccompl 3206  cun 3208  cin 3209  csymdif 3210   ifcif 3663  {csn 3738  1cc1c 4135  1cpw1 4136  cop 4562   S csset 4720  cima 4723   × cxp 4771  ccnv 4772   cmpt 5652   Ins2 cins2 5750   Ins3 cins3 5752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-xp 4785  df-cnv 4786  df-2nd 4798  df-mpt 5653  df-txp 5737  df-ins2 5751  df-ins3 5753
This theorem is referenced by:  enprmaplem5  6081
  Copyright terms: Public domain W3C validator