New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > enprmaplem4 | GIF version |
Description: Lemma for enprmap 6083. More stratification condition setup. (Contributed by SF, 3-Mar-2015.) |
Ref | Expression |
---|---|
enprmaplem4.1 | ⊢ R = (u ∈ B ↦ if(u ∈ p, x, y)) |
enprmaplem4.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
enprmaplem4 | ⊢ R ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enprmaplem4.1 | . . 3 ⊢ R = (u ∈ B ↦ if(u ∈ p, x, y)) | |
2 | elun 3221 | . . . . . 6 ⊢ (〈u, {z}〉 ∈ ((p × ℘1x) ∪ ( ∼ p × ℘1y)) ↔ (〈u, {z}〉 ∈ (p × ℘1x) ∨ 〈u, {z}〉 ∈ ( ∼ p × ℘1y))) | |
3 | opelxp 4812 | . . . . . . . 8 ⊢ (〈u, {z}〉 ∈ (p × ℘1x) ↔ (u ∈ p ∧ {z} ∈ ℘1x)) | |
4 | snelpw1 4147 | . . . . . . . . 9 ⊢ ({z} ∈ ℘1x ↔ z ∈ x) | |
5 | 4 | anbi2i 675 | . . . . . . . 8 ⊢ ((u ∈ p ∧ {z} ∈ ℘1x) ↔ (u ∈ p ∧ z ∈ x)) |
6 | 3, 5 | bitri 240 | . . . . . . 7 ⊢ (〈u, {z}〉 ∈ (p × ℘1x) ↔ (u ∈ p ∧ z ∈ x)) |
7 | opelxp 4812 | . . . . . . . 8 ⊢ (〈u, {z}〉 ∈ ( ∼ p × ℘1y) ↔ (u ∈ ∼ p ∧ {z} ∈ ℘1y)) | |
8 | vex 2863 | . . . . . . . . . 10 ⊢ u ∈ V | |
9 | 8 | elcompl 3226 | . . . . . . . . 9 ⊢ (u ∈ ∼ p ↔ ¬ u ∈ p) |
10 | snelpw1 4147 | . . . . . . . . 9 ⊢ ({z} ∈ ℘1y ↔ z ∈ y) | |
11 | 9, 10 | anbi12i 678 | . . . . . . . 8 ⊢ ((u ∈ ∼ p ∧ {z} ∈ ℘1y) ↔ (¬ u ∈ p ∧ z ∈ y)) |
12 | 7, 11 | bitri 240 | . . . . . . 7 ⊢ (〈u, {z}〉 ∈ ( ∼ p × ℘1y) ↔ (¬ u ∈ p ∧ z ∈ y)) |
13 | 6, 12 | orbi12i 507 | . . . . . 6 ⊢ ((〈u, {z}〉 ∈ (p × ℘1x) ∨ 〈u, {z}〉 ∈ ( ∼ p × ℘1y)) ↔ ((u ∈ p ∧ z ∈ x) ∨ (¬ u ∈ p ∧ z ∈ y))) |
14 | 2, 13 | bitri 240 | . . . . 5 ⊢ (〈u, {z}〉 ∈ ((p × ℘1x) ∪ ( ∼ p × ℘1y)) ↔ ((u ∈ p ∧ z ∈ x) ∨ (¬ u ∈ p ∧ z ∈ y))) |
15 | opelcnv 4894 | . . . . 5 ⊢ (〈{z}, u〉 ∈ ◡((p × ℘1x) ∪ ( ∼ p × ℘1y)) ↔ 〈u, {z}〉 ∈ ((p × ℘1x) ∪ ( ∼ p × ℘1y))) | |
16 | elif 3697 | . . . . 5 ⊢ (z ∈ if(u ∈ p, x, y) ↔ ((u ∈ p ∧ z ∈ x) ∨ (¬ u ∈ p ∧ z ∈ y))) | |
17 | 14, 15, 16 | 3bitr4i 268 | . . . 4 ⊢ (〈{z}, u〉 ∈ ◡((p × ℘1x) ∪ ( ∼ p × ℘1y)) ↔ z ∈ if(u ∈ p, x, y)) |
18 | 17 | releqmpt 5809 | . . 3 ⊢ ((B × V) ∩ ◡ ∼ (( Ins3 S ⊕ Ins2 ◡((p × ℘1x) ∪ ( ∼ p × ℘1y))) “ 1c)) = (u ∈ B ↦ if(u ∈ p, x, y)) |
19 | 1, 18 | eqtr4i 2376 | . 2 ⊢ R = ((B × V) ∩ ◡ ∼ (( Ins3 S ⊕ Ins2 ◡((p × ℘1x) ∪ ( ∼ p × ℘1y))) “ 1c)) |
20 | enprmaplem4.2 | . . 3 ⊢ B ∈ V | |
21 | vex 2863 | . . . . . 6 ⊢ p ∈ V | |
22 | vex 2863 | . . . . . . 7 ⊢ x ∈ V | |
23 | 22 | pw1ex 4304 | . . . . . 6 ⊢ ℘1x ∈ V |
24 | 21, 23 | xpex 5116 | . . . . 5 ⊢ (p × ℘1x) ∈ V |
25 | 21 | complex 4105 | . . . . . 6 ⊢ ∼ p ∈ V |
26 | vex 2863 | . . . . . . 7 ⊢ y ∈ V | |
27 | 26 | pw1ex 4304 | . . . . . 6 ⊢ ℘1y ∈ V |
28 | 25, 27 | xpex 5116 | . . . . 5 ⊢ ( ∼ p × ℘1y) ∈ V |
29 | 24, 28 | unex 4107 | . . . 4 ⊢ ((p × ℘1x) ∪ ( ∼ p × ℘1y)) ∈ V |
30 | 29 | cnvex 5103 | . . 3 ⊢ ◡((p × ℘1x) ∪ ( ∼ p × ℘1y)) ∈ V |
31 | 20, 30 | mptexlem 5811 | . 2 ⊢ ((B × V) ∩ ◡ ∼ (( Ins3 S ⊕ Ins2 ◡((p × ℘1x) ∪ ( ∼ p × ℘1y))) “ 1c)) ∈ V |
32 | 19, 31 | eqeltri 2423 | 1 ⊢ R ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∼ ccompl 3206 ∪ cun 3208 ∩ cin 3209 ⊕ csymdif 3210 ifcif 3663 {csn 3738 1cc1c 4135 ℘1cpw1 4136 〈cop 4562 S csset 4720 “ cima 4723 × cxp 4771 ◡ccnv 4772 ↦ cmpt 5652 Ins2 cins2 5750 Ins3 cins3 5752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-xp 4785 df-cnv 4786 df-2nd 4798 df-mpt 5653 df-txp 5737 df-ins2 5751 df-ins3 5753 |
This theorem is referenced by: enprmaplem5 6081 |
Copyright terms: Public domain | W3C validator |