HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem6 Structured version   Visualization version   GIF version

Theorem cnlnadjlem6 28149
Description: Lemma for cnlnadji 28153. 𝐹 is linear. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ConOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
cnlnadjlem.5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
Assertion
Ref Expression
cnlnadjlem6 𝐹 ∈ LinOp
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦   𝑤,𝐹   𝑇,𝑔,𝑣,𝑤,𝑦   𝑣,𝐺,𝑤
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑔)   𝐹(𝑦,𝑣,𝑔)   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem6
Dummy variables 𝑓 𝑧 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.5 . . 3 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
2 cnlnadjlem.1 . . . 4 𝑇 ∈ LinOp
3 cnlnadjlem.2 . . . 4 𝑇 ∈ ConOp
4 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
5 cnlnadjlem.4 . . . 4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
62, 3, 4, 5cnlnadjlem3 28146 . . 3 (𝑦 ∈ ℋ → 𝐵 ∈ ℋ)
71, 6fmpti 6276 . 2 𝐹: ℋ⟶ ℋ
82lnopfi 28046 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
98ffvelrni 6251 . . . . . . . . 9 (𝑡 ∈ ℋ → (𝑇𝑡) ∈ ℋ)
109adantl 480 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇𝑡) ∈ ℋ)
11 hvmulcl 27088 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥 · 𝑓) ∈ ℋ)
1211ad2antrr 757 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥 · 𝑓) ∈ ℋ)
13 simplr 787 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑧 ∈ ℋ)
14 his7 27165 . . . . . . . 8 (((𝑇𝑡) ∈ ℋ ∧ (𝑥 · 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)))
1510, 12, 13, 14syl3anc 1317 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)))
16 hvaddcl 27087 . . . . . . . . 9 (((𝑥 · 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑓) + 𝑧) ∈ ℋ)
1711, 16sylan 486 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑓) + 𝑧) ∈ ℋ)
182, 3, 4, 5, 1cnlnadjlem5 28148 . . . . . . . 8 ((((𝑥 · 𝑓) + 𝑧) ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))))
1917, 18sylan 486 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))))
20 simpll 785 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑥 ∈ ℂ)
219adantl 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇𝑡) ∈ ℋ)
22 simplr 787 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑓 ∈ ℋ)
23 his5 27161 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑇𝑡) ∈ ℋ ∧ 𝑓 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
2420, 21, 22, 23syl3anc 1317 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
25 simpr 475 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈ ℋ)
262, 3, 4, 5, 1cnlnadjlem4 28147 . . . . . . . . . . . . . 14 (𝑓 ∈ ℋ → (𝐹𝑓) ∈ ℋ)
2726ad2antlr 758 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹𝑓) ∈ ℋ)
28 his5 27161 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑡 ∈ ℋ ∧ (𝐹𝑓) ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
2920, 25, 27, 28syl3anc 1317 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
302, 3, 4, 5, 1cnlnadjlem5 28148 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹𝑓)))
3130adantll 745 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹𝑓)))
3231oveq2d 6543 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
3329, 32eqtr4d 2646 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
3424, 33eqtr4d 2646 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = (𝑡 ·ih (𝑥 · (𝐹𝑓))))
3534adantlr 746 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = (𝑡 ·ih (𝑥 · (𝐹𝑓))))
362, 3, 4, 5, 1cnlnadjlem5 28148 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹𝑧)))
3736adantll 745 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹𝑧)))
3835, 37oveq12d 6545 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
39 simpr 475 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈ ℋ)
40 hvmulcl 27088 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝐹𝑓) ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
4126, 40sylan2 489 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
4241ad2antrr 757 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
432, 3, 4, 5, 1cnlnadjlem4 28147 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝐹𝑧) ∈ ℋ)
4443ad2antlr 758 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹𝑧) ∈ ℋ)
45 his7 27165 . . . . . . . . 9 ((𝑡 ∈ ℋ ∧ (𝑥 · (𝐹𝑓)) ∈ ℋ ∧ (𝐹𝑧) ∈ ℋ) → (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
4639, 42, 44, 45syl3anc 1317 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
4738, 46eqtr4d 2646 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
4815, 19, 473eqtr3d 2651 . . . . . 6 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
4948ralrimiva 2948 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
502, 3, 4, 5, 1cnlnadjlem4 28147 . . . . . . 7 (((𝑥 · 𝑓) + 𝑧) ∈ ℋ → (𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ)
5117, 50syl 17 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ)
52 hvaddcl 27087 . . . . . . 7 (((𝑥 · (𝐹𝑓)) ∈ ℋ ∧ (𝐹𝑧) ∈ ℋ) → ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ)
5341, 43, 52syl2an 492 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ)
54 hial2eq2 27182 . . . . . 6 (((𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ ∧ ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ) → (∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) ↔ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
5551, 53, 54syl2anc 690 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) ↔ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
5649, 55mpbid 220 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)))
5756ralrimiva 2948 . . 3 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)))
5857rgen2 2957 . 2 𝑥 ∈ ℂ ∀𝑓 ∈ ℋ ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))
59 ellnop 27935 . 2 (𝐹 ∈ LinOp ↔ (𝐹: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑓 ∈ ℋ ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
607, 58, 59mpbir2an 956 1 𝐹 ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  cmpt 4637  wf 5786  cfv 5790  crio 6488  (class class class)co 6527  cc 9791   + caddc 9796   · cmul 9798  ccj 13633  chil 26994   + cva 26995   · csm 26996   ·ih csp 26997  ConOpccop 27021  LinOpclo 27022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cc 9118  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873  ax-hilex 27074  ax-hfvadd 27075  ax-hvcom 27076  ax-hvass 27077  ax-hv0cl 27078  ax-hvaddid 27079  ax-hfvmul 27080  ax-hvmulid 27081  ax-hvmulass 27082  ax-hvdistr1 27083  ax-hvdistr2 27084  ax-hvmul0 27085  ax-hfi 27154  ax-his1 27157  ax-his2 27158  ax-his3 27159  ax-his4 27160  ax-hcompl 27277
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-omul 7430  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-acn 8629  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-rlim 14017  df-sum 14214  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-cn 20789  df-cnp 20790  df-lm 20791  df-t1 20876  df-haus 20877  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cfil 22806  df-cau 22807  df-cmet 22808  df-grpo 26525  df-gid 26526  df-ginv 26527  df-gdiv 26528  df-ablo 26580  df-vc 26595  df-nv 26643  df-va 26646  df-ba 26647  df-sm 26648  df-0v 26649  df-vs 26650  df-nmcv 26651  df-ims 26652  df-dip 26769  df-ssp 26793  df-ph 26886  df-cbn 26937  df-hnorm 27043  df-hba 27044  df-hvsub 27046  df-hlim 27047  df-hcau 27048  df-sh 27282  df-ch 27296  df-oc 27327  df-ch0 27328  df-nmop 27916  df-cnop 27917  df-lnop 27918  df-nmfn 27922  df-nlfn 27923  df-cnfn 27924  df-lnfn 27925
This theorem is referenced by:  cnlnadjlem8  28151  cnlnadjlem9  28152
  Copyright terms: Public domain W3C validator