MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flid Structured version   Visualization version   GIF version

Theorem flid 12556
Description: An integer is its own floor. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
flid (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)

Proof of Theorem flid
StepHypRef Expression
1 zre 11332 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 flle 12547 . . 3 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
31, 2syl 17 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) ≤ 𝐴)
41leidd 10545 . . 3 (𝐴 ∈ ℤ → 𝐴𝐴)
5 flge 12553 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℤ) → (𝐴𝐴𝐴 ≤ (⌊‘𝐴)))
61, 5mpancom 702 . . 3 (𝐴 ∈ ℤ → (𝐴𝐴𝐴 ≤ (⌊‘𝐴)))
74, 6mpbid 222 . 2 (𝐴 ∈ ℤ → 𝐴 ≤ (⌊‘𝐴))
8 reflcl 12544 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
91, 8syl 17 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) ∈ ℝ)
109, 1letri3d 10130 . 2 (𝐴 ∈ ℤ → ((⌊‘𝐴) = 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≤ (⌊‘𝐴))))
113, 7, 10mpbir2and 956 1 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987   class class class wbr 4618  cfv 5852  cr 9886  cle 10026  cz 11328  cfl 12538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-n0 11244  df-z 11329  df-uz 11639  df-fl 12540
This theorem is referenced by:  flidm  12557  flidz  12558  ceilid  12597  fleqceilz  12600  zmod10  12633  bits0  15081  bitsp1e  15085  bitsuz  15127  phiprmpw  15412  fldivp1  15532  prmreclem4  15554  dvfsumlem1  23706  dvfsumlem3  23708  ppival2  24767  ppival2g  24768  chtprm  24792  chtnprm  24793  chpp1  24794  chtdif  24797  cht1  24804  chp1  24806  prmorcht  24817  logfaclbnd  24860  logfacbnd3  24861  logexprlim  24863  rplogsumlem2  25087  log2sumbnd  25146  logdivbnd  25158  pntrsumbnd  25168  pntrlog2bndlem1  25179  pntrlog2bndlem4  25182  dnizphlfeqhlf  32135  lefldiveq  38992  fourierdlem65  39716  zefldiv2ALTV  40893  bits0ALTV  40910  zefldiv2  41633  flnn0div2ge  41636  flnn0ohalf  41637  nnlog2ge0lt1  41673  logbpw2m1  41674  blenpw2  41685  blen1  41691  blen2  41692  blengt1fldiv2p1  41700  dignn0fr  41708  dig0  41713  digexp  41714  0dig2nn0e  41719  0dig2nn0o  41720
  Copyright terms: Public domain W3C validator