MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2sumbnd Structured version   Visualization version   GIF version

Theorem log2sumbnd 25278
Description: Bound on the difference between Σ𝑛𝐴, log↑2(𝑛) and the equivalent integral. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
log2sumbnd ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2))
Distinct variable group:   𝐴,𝑛

Proof of Theorem log2sumbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12812 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (1...(⌊‘𝐴)) ∈ Fin)
2 elfznn 12408 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
32adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
43nnrpd 11908 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
54relogcld 24414 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
65resqcld 13075 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((log‘𝑛)↑2) ∈ ℝ)
71, 6fsumrecl 14509 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) ∈ ℝ)
8 rpre 11877 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
98adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
10 relogcl 24367 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
1110adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
1211resqcld 13075 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘𝐴)↑2) ∈ ℝ)
13 2re 11128 . . . . . . . . . 10 2 ∈ ℝ
14 remulcl 10059 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (2 · (log‘𝐴)) ∈ ℝ)
1513, 11, 14sylancr 696 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (2 · (log‘𝐴)) ∈ ℝ)
16 resubcl 10383 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (2 · (log‘𝐴)) ∈ ℝ) → (2 − (2 · (log‘𝐴))) ∈ ℝ)
1713, 15, 16sylancr 696 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (2 − (2 · (log‘𝐴))) ∈ ℝ)
1812, 17readdcld 10107 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))) ∈ ℝ)
199, 18remulcld 10108 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))) ∈ ℝ)
207, 19resubcld 10496 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℝ)
2120recnd 10106 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ)
2221abscld 14219 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ∈ ℝ)
23 resubcl 10383 . . . 4 (((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ∈ ℝ ∧ 2 ∈ ℝ) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ∈ ℝ)
2422, 13, 23sylancl 695 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ∈ ℝ)
25 2cn 11129 . . . . . 6 2 ∈ ℂ
2625negcli 10387 . . . . 5 -2 ∈ ℂ
27 subcl 10318 . . . . 5 (((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ ∧ -2 ∈ ℂ) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2) ∈ ℂ)
2821, 26, 27sylancl 695 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2) ∈ ℂ)
2928abscld 14219 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)) ∈ ℝ)
3025absnegi 14183 . . . . . 6 (abs‘-2) = (abs‘2)
31 0le2 11149 . . . . . . 7 0 ≤ 2
32 absid 14080 . . . . . . 7 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
3313, 31, 32mp2an 708 . . . . . 6 (abs‘2) = 2
3430, 33eqtri 2673 . . . . 5 (abs‘-2) = 2
3534oveq2i 6701 . . . 4 ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) = ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2)
36 abs2dif 14116 . . . . 5 (((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ ∧ -2 ∈ ℂ) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
3721, 26, 36sylancl 695 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
3835, 37syl5eqbrr 4721 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
39 fveq2 6229 . . . . . . . . . . 11 (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴))
4039oveq2d 6706 . . . . . . . . . 10 (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴)))
4140sumeq1d 14475 . . . . . . . . 9 (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2))
42 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
43 fveq2 6229 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
4443oveq1d 6705 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((log‘𝑥)↑2) = ((log‘𝐴)↑2))
4543oveq2d 6706 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (2 · (log‘𝑥)) = (2 · (log‘𝐴)))
4645oveq2d 6706 . . . . . . . . . . 11 (𝑥 = 𝐴 → (2 − (2 · (log‘𝑥))) = (2 − (2 · (log‘𝐴))))
4744, 46oveq12d 6708 . . . . . . . . . 10 (𝑥 = 𝐴 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))
4842, 47oveq12d 6708 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))
4941, 48oveq12d 6708 . . . . . . . 8 (𝑥 = 𝐴 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
50 eqid 2651 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))
51 ovex 6718 . . . . . . . 8 𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) ∈ V
5249, 50, 51fvmpt3i 6326 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
5352adantr 480 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
54 1rp 11874 . . . . . . 7 1 ∈ ℝ+
55 fveq2 6229 . . . . . . . . . . . . . 14 (𝑥 = 1 → (⌊‘𝑥) = (⌊‘1))
56 1z 11445 . . . . . . . . . . . . . . 15 1 ∈ ℤ
57 flid 12649 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → (⌊‘1) = 1)
5856, 57ax-mp 5 . . . . . . . . . . . . . 14 (⌊‘1) = 1
5955, 58syl6eq 2701 . . . . . . . . . . . . 13 (𝑥 = 1 → (⌊‘𝑥) = 1)
6059oveq2d 6706 . . . . . . . . . . . 12 (𝑥 = 1 → (1...(⌊‘𝑥)) = (1...1))
6160sumeq1d 14475 . . . . . . . . . . 11 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = Σ𝑛 ∈ (1...1)((log‘𝑛)↑2))
62 0cn 10070 . . . . . . . . . . . 12 0 ∈ ℂ
63 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (log‘𝑛) = (log‘1))
64 log1 24377 . . . . . . . . . . . . . . 15 (log‘1) = 0
6563, 64syl6eq 2701 . . . . . . . . . . . . . 14 (𝑛 = 1 → (log‘𝑛) = 0)
6665sq0id 12997 . . . . . . . . . . . . 13 (𝑛 = 1 → ((log‘𝑛)↑2) = 0)
6766fsum1 14520 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 0 ∈ ℂ) → Σ𝑛 ∈ (1...1)((log‘𝑛)↑2) = 0)
6856, 62, 67mp2an 708 . . . . . . . . . . 11 Σ𝑛 ∈ (1...1)((log‘𝑛)↑2) = 0
6961, 68syl6eq 2701 . . . . . . . . . 10 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = 0)
70 id 22 . . . . . . . . . . . 12 (𝑥 = 1 → 𝑥 = 1)
71 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (log‘𝑥) = (log‘1))
7271, 64syl6eq 2701 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (log‘𝑥) = 0)
7372sq0id 12997 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((log‘𝑥)↑2) = 0)
7472oveq2d 6706 . . . . . . . . . . . . . . . . 17 (𝑥 = 1 → (2 · (log‘𝑥)) = (2 · 0))
75 2t0e0 11221 . . . . . . . . . . . . . . . . 17 (2 · 0) = 0
7674, 75syl6eq 2701 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (2 · (log‘𝑥)) = 0)
7776oveq2d 6706 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (2 − (2 · (log‘𝑥))) = (2 − 0))
7825subid1i 10391 . . . . . . . . . . . . . . 15 (2 − 0) = 2
7977, 78syl6eq 2701 . . . . . . . . . . . . . 14 (𝑥 = 1 → (2 − (2 · (log‘𝑥))) = 2)
8073, 79oveq12d 6708 . . . . . . . . . . . . 13 (𝑥 = 1 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = (0 + 2))
8125addid2i 10262 . . . . . . . . . . . . 13 (0 + 2) = 2
8280, 81syl6eq 2701 . . . . . . . . . . . 12 (𝑥 = 1 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = 2)
8370, 82oveq12d 6708 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (1 · 2))
8425mulid2i 10081 . . . . . . . . . . 11 (1 · 2) = 2
8583, 84syl6eq 2701 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = 2)
8669, 85oveq12d 6708 . . . . . . . . 9 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (0 − 2))
87 df-neg 10307 . . . . . . . . 9 -2 = (0 − 2)
8886, 87syl6eqr 2703 . . . . . . . 8 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = -2)
8988, 50, 51fvmpt3i 6326 . . . . . . 7 (1 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1) = -2)
9054, 89mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1) = -2)
9153, 90oveq12d 6708 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1)) = ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2))
9291fveq2d 6233 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1))) = (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
93 ioorp 12289 . . . . . 6 (0(,)+∞) = ℝ+
9493eqcomi 2660 . . . . 5 + = (0(,)+∞)
95 nnuz 11761 . . . . 5 ℕ = (ℤ‘1)
9656a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℤ)
97 1red 10093 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
98 pnfxr 10130 . . . . . 6 +∞ ∈ ℝ*
9998a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → +∞ ∈ ℝ*)
100 1re 10077 . . . . . . 7 1 ∈ ℝ
101 1nn0 11346 . . . . . . 7 1 ∈ ℕ0
102100, 101nn0addge1i 11379 . . . . . 6 1 ≤ (1 + 1)
103102a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ (1 + 1))
104 0red 10079 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
105 rpre 11877 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
106105adantl 481 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
107 simpr 476 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
108107relogcld 24414 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
109108resqcld 13075 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥)↑2) ∈ ℝ)
110 remulcl 10059 . . . . . . . . 9 ((2 ∈ ℝ ∧ (log‘𝑥) ∈ ℝ) → (2 · (log‘𝑥)) ∈ ℝ)
11113, 108, 110sylancr 696 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (log‘𝑥)) ∈ ℝ)
112 resubcl 10383 . . . . . . . 8 ((2 ∈ ℝ ∧ (2 · (log‘𝑥)) ∈ ℝ) → (2 − (2 · (log‘𝑥))) ∈ ℝ)
11313, 111, 112sylancr 696 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 − (2 · (log‘𝑥))) ∈ ℝ)
114109, 113readdcld 10107 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) ∈ ℝ)
115106, 114remulcld 10108 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) ∈ ℝ)
116 nnrp 11880 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
117116, 109sylan2 490 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℕ) → ((log‘𝑥)↑2) ∈ ℝ)
118 reelprrecn 10066 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
119118a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ ∈ {ℝ, ℂ})
120106recnd 10106 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
121 1red 10093 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℝ)
122 recn 10064 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
123122adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
124 1red 10093 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
125119dvmptid 23765 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
126 rpssre 11881 . . . . . . . . 9 + ⊆ ℝ
127126a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ+ ⊆ ℝ)
128 eqid 2651 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
129128tgioo2 22653 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
130 iooretop 22616 . . . . . . . . . 10 (0(,)+∞) ∈ (topGen‘ran (,))
13193, 130eqeltrri 2727 . . . . . . . . 9 + ∈ (topGen‘ran (,))
132131a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ+ ∈ (topGen‘ran (,)))
133119, 123, 124, 125, 127, 129, 128, 132dvmptres 23771 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
134114recnd 10106 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) ∈ ℂ)
135 resubcl 10383 . . . . . . . . 9 (((2 · (log‘𝑥)) ∈ ℝ ∧ 2 ∈ ℝ) → ((2 · (log‘𝑥)) − 2) ∈ ℝ)
136111, 13, 135sylancl 695 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) − 2) ∈ ℝ)
137136, 107rerpdivcld 11941 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) / 𝑥) ∈ ℝ)
138109recnd 10106 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥)↑2) ∈ ℂ)
139111recnd 10106 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (log‘𝑥)) ∈ ℂ)
140107rpreccld 11920 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
141140rpcnd 11912 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
142139, 141mulcld 10098 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) · (1 / 𝑥)) ∈ ℂ)
143 cnelprrecn 10067 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
144143a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℂ ∈ {ℝ, ℂ})
145108recnd 10106 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
146 sqcl 12965 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (𝑦↑2) ∈ ℂ)
147146adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → (𝑦↑2) ∈ ℂ)
148 simpr 476 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
149 mulcl 10058 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (2 · 𝑦) ∈ ℂ)
15025, 148, 149sylancr 696 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → (2 · 𝑦) ∈ ℂ)
151 dvrelog 24428 . . . . . . . . . . 11 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
152 relogf1o 24358 . . . . . . . . . . . . . . 15 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
153 f1of 6175 . . . . . . . . . . . . . . 15 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
154152, 153mp1i 13 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+):ℝ+⟶ℝ)
155154feqmptd 6288 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
156 fvres 6245 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
157156mpteq2ia 4773 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
158155, 157syl6eq 2701 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
159158oveq2d 6706 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
160151, 159syl5reqr 2700 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
161 2nn 11223 . . . . . . . . . . . 12 2 ∈ ℕ
162 dvexp 23761 . . . . . . . . . . . 12 (2 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
163161, 162mp1i 13 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
164 2m1e1 11173 . . . . . . . . . . . . . . 15 (2 − 1) = 1
165164oveq2i 6701 . . . . . . . . . . . . . 14 (𝑦↑(2 − 1)) = (𝑦↑1)
166 exp1 12906 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ → (𝑦↑1) = 𝑦)
167165, 166syl5eq 2697 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦↑(2 − 1)) = 𝑦)
168167oveq2d 6706 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (2 · (𝑦↑(2 − 1))) = (2 · 𝑦))
169168mpteq2ia 4773 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))) = (𝑦 ∈ ℂ ↦ (2 · 𝑦))
170163, 169syl6eq 2701 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · 𝑦)))
171 oveq1 6697 . . . . . . . . . 10 (𝑦 = (log‘𝑥) → (𝑦↑2) = ((log‘𝑥)↑2))
172 oveq2 6698 . . . . . . . . . 10 (𝑦 = (log‘𝑥) → (2 · 𝑦) = (2 · (log‘𝑥)))
173119, 144, 145, 140, 147, 150, 160, 170, 171, 172dvmptco 23780 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2))) = (𝑥 ∈ ℝ+ ↦ ((2 · (log‘𝑥)) · (1 / 𝑥))))
174113recnd 10106 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 − (2 · (log‘𝑥))) ∈ ℂ)
175 ovexd 6720 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (0 − (2 · (1 / 𝑥))) ∈ V)
176 2cnd 11131 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
177 0red 10079 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℝ)
178 2cnd 11131 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 2 ∈ ℂ)
179 0red 10079 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
180 2cnd 11131 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 2 ∈ ℂ)
181119, 180dvmptc 23766 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 2)) = (𝑥 ∈ ℝ ↦ 0))
182119, 178, 179, 181, 127, 129, 128, 132dvmptres 23771 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ 2)) = (𝑥 ∈ ℝ+ ↦ 0))
183 mulcl 10058 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (1 / 𝑥) ∈ ℂ) → (2 · (1 / 𝑥)) ∈ ℂ)
18425, 141, 183sylancr 696 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (1 / 𝑥)) ∈ ℂ)
185119, 145, 140, 160, 180dvmptcmul 23772 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (2 · (1 / 𝑥))))
186119, 176, 177, 182, 139, 184, 185dvmptsub 23775 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (0 − (2 · (1 / 𝑥)))))
187119, 138, 142, 173, 174, 175, 186dvmptadd 23768 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))))
188139, 176, 141subdird 10525 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) · (1 / 𝑥)) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
189136recnd 10106 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) − 2) ∈ ℂ)
190 rpne0 11886 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ≠ 0)
191190adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
192189, 120, 191divrecd 10842 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) / 𝑥) = (((2 · (log‘𝑥)) − 2) · (1 / 𝑥)))
193 df-neg 10307 . . . . . . . . . . . 12 -(2 · (1 / 𝑥)) = (0 − (2 · (1 / 𝑥)))
194193oveq2i 6701 . . . . . . . . . . 11 (((2 · (log‘𝑥)) · (1 / 𝑥)) + -(2 · (1 / 𝑥))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))
195142, 184negsubd 10436 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + -(2 · (1 / 𝑥))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
196194, 195syl5eqr 2699 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥)))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
197188, 192, 1963eqtr4rd 2696 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥)))) = (((2 · (log‘𝑥)) − 2) / 𝑥))
198197mpteq2dva 4777 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) − 2) / 𝑥)))
199187, 198eqtrd 2685 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) − 2) / 𝑥)))
200119, 120, 121, 133, 134, 137, 199dvmptmul 23769 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥))))
201134mulid2d 10096 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))
202138, 139, 176subsub2d 10459 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) = (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))
203201, 202eqtr4d 2688 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)))
204189, 120, 191divcan1d 10840 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥) = ((2 · (log‘𝑥)) − 2))
205203, 204oveq12d 6708 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥)) = ((((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) + ((2 · (log‘𝑥)) − 2)))
206138, 189npcand 10434 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) + ((2 · (log‘𝑥)) − 2)) = ((log‘𝑥)↑2))
207205, 206eqtrd 2685 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥)) = ((log‘𝑥)↑2))
208207mpteq2dva 4777 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2)))
209200, 208eqtrd 2685 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2)))
210 fveq2 6229 . . . . . 6 (𝑥 = 𝑛 → (log‘𝑥) = (log‘𝑛))
211210oveq1d 6705 . . . . 5 (𝑥 = 𝑛 → ((log‘𝑥)↑2) = ((log‘𝑛)↑2))
212 simp32 1118 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥𝑛)
213 simp2l 1107 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥 ∈ ℝ+)
214 simp2r 1108 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑛 ∈ ℝ+)
215213, 214logled 24418 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
216212, 215mpbid 222 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ≤ (log‘𝑛))
217213relogcld 24414 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ∈ ℝ)
218214relogcld 24414 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑛) ∈ ℝ)
219 simp31 1117 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ≤ 𝑥)
220 logleb 24394 . . . . . . . . . 10 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
22154, 213, 220sylancr 696 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
222219, 221mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘1) ≤ (log‘𝑥))
22364, 222syl5eqbrr 4721 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 0 ≤ (log‘𝑥))
224214rpred 11910 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑛 ∈ ℝ)
225 1red 10093 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ∈ ℝ)
226213rpred 11910 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥 ∈ ℝ)
227225, 226, 224, 219, 212letrd 10232 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ≤ 𝑛)
228224, 227logge0d 24421 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 0 ≤ (log‘𝑛))
229217, 218, 223, 228le2sqd 13084 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → ((log‘𝑥) ≤ (log‘𝑛) ↔ ((log‘𝑥)↑2) ≤ ((log‘𝑛)↑2)))
230216, 229mpbid 222 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → ((log‘𝑥)↑2) ≤ ((log‘𝑛)↑2))
231 relogcl 24367 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
232231ad2antrl 764 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
233232sqge0d 13076 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘𝑥)↑2))
23454a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ+)
235 simpl 472 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
236 1le1 10693 . . . . . 6 1 ≤ 1
237236a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 1)
238 simpr 476 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
2399rexrd 10127 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ*)
240 pnfge 12002 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
241239, 240syl 17 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ≤ +∞)
24294, 95, 96, 97, 99, 103, 104, 115, 109, 117, 209, 211, 230, 50, 233, 234, 235, 237, 238, 241, 44dvfsum2 23842 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1))) ≤ ((log‘𝐴)↑2))
24392, 242eqbrtrrd 4709 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)) ≤ ((log‘𝐴)↑2))
24424, 29, 12, 38, 243letrd 10232 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ ((log‘𝐴)↑2))
24513a1i 11 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 2 ∈ ℝ)
24622, 245, 12lesubaddd 10662 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ ((log‘𝐴)↑2) ↔ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2)))
247244, 246mpbid 222 1 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  wss 3607  {cpr 4212   class class class wbr 4685  cmpt 4762  ran crn 5144  cres 5145  wf 5922  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109  *cxr 10111  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  2c2 11108  cz 11415  +crp 11870  (,)cioo 12213  ...cfz 12364  cfl 12631  cexp 12900  abscabs 14018  Σcsu 14460  TopOpenctopn 16129  topGenctg 16145  fldccnfld 19794   D cdv 23672  logclog 24346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348
This theorem is referenced by:  selberglem2  25280
  Copyright terms: Public domain W3C validator