MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim3 Structured version   Visualization version   GIF version

Theorem geolim3 24928
Description: Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
geolim3.a (𝜑𝐴 ∈ ℤ)
geolim3.b1 (𝜑𝐵 ∈ ℂ)
geolim3.b2 (𝜑 → (abs‘𝐵) < 1)
geolim3.c (𝜑𝐶 ∈ ℂ)
geolim3.f 𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
Assertion
Ref Expression
geolim3 (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵)))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geolim3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 geolim3.f . . 3 𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
2 seqeq3 13375 . . 3 (𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) → seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))))
31, 2ax-mp 5 . 2 seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))))
4 nn0uz 12281 . . . . 5 0 = (ℤ‘0)
5 0zd 11994 . . . . 5 (𝜑 → 0 ∈ ℤ)
6 geolim3.c . . . . 5 (𝜑𝐶 ∈ ℂ)
7 geolim3.b1 . . . . . 6 (𝜑𝐵 ∈ ℂ)
8 geolim3.b2 . . . . . 6 (𝜑 → (abs‘𝐵) < 1)
9 oveq2 7164 . . . . . . . 8 (𝑘 = 𝑎 → (𝐵𝑘) = (𝐵𝑎))
10 eqid 2821 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ (𝐵𝑘)) = (𝑘 ∈ ℕ0 ↦ (𝐵𝑘))
11 ovex 7189 . . . . . . . 8 (𝐵𝑎) ∈ V
129, 10, 11fvmpt 6768 . . . . . . 7 (𝑎 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) = (𝐵𝑎))
1312adantl 484 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) = (𝐵𝑎))
147, 8, 13geolim 15226 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (𝐵𝑘))) ⇝ (1 / (1 − 𝐵)))
15 expcl 13448 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑎 ∈ ℕ0) → (𝐵𝑎) ∈ ℂ)
167, 15sylan 582 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (𝐵𝑎) ∈ ℂ)
1713, 16eqeltrd 2913 . . . . 5 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) ∈ ℂ)
18 geolim3.a . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
1918zcnd 12089 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
20 nn0cn 11908 . . . . . . 7 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
21 fvex 6683 . . . . . . . . 9 (ℤ𝐴) ∈ V
2221mptex 6986 . . . . . . . 8 (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) ∈ V
2322shftval4 14436 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)))
2419, 20, 23syl2an 597 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)))
25 uzid 12259 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
2618, 25syl 17 . . . . . . . 8 (𝜑𝐴 ∈ (ℤ𝐴))
27 uzaddcl 12305 . . . . . . . 8 ((𝐴 ∈ (ℤ𝐴) ∧ 𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ𝐴))
2826, 27sylan 582 . . . . . . 7 ((𝜑𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ𝐴))
29 oveq1 7163 . . . . . . . . . 10 (𝑘 = (𝐴 + 𝑎) → (𝑘𝐴) = ((𝐴 + 𝑎) − 𝐴))
3029oveq2d 7172 . . . . . . . . 9 (𝑘 = (𝐴 + 𝑎) → (𝐵↑(𝑘𝐴)) = (𝐵↑((𝐴 + 𝑎) − 𝐴)))
3130oveq2d 7172 . . . . . . . 8 (𝑘 = (𝐴 + 𝑎) → (𝐶 · (𝐵↑(𝑘𝐴))) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
32 eqid 2821 . . . . . . . 8 (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
33 ovex 7189 . . . . . . . 8 (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) ∈ V
3431, 32, 33fvmpt 6768 . . . . . . 7 ((𝐴 + 𝑎) ∈ (ℤ𝐴) → ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
3528, 34syl 17 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
36 pncan2 10893 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝐴 + 𝑎) − 𝐴) = 𝑎)
3719, 20, 36syl2an 597 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ0) → ((𝐴 + 𝑎) − 𝐴) = 𝑎)
3837oveq2d 7172 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = (𝐵𝑎))
3938, 13eqtr4d 2859 . . . . . . 7 ((𝜑𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎))
4039oveq2d 7172 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎)))
4124, 35, 403eqtrd 2860 . . . . 5 ((𝜑𝑎 ∈ ℕ0) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎)))
424, 5, 6, 14, 17, 41isermulc2 15014 . . . 4 (𝜑 → seq0( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 · (1 / (1 − 𝐵))))
4319negidd 10987 . . . . 5 (𝜑 → (𝐴 + -𝐴) = 0)
4443seqeq1d 13376 . . . 4 (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) = seq0( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)))
45 ax-1cn 10595 . . . . . 6 1 ∈ ℂ
46 subcl 10885 . . . . . 6 ((1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 − 𝐵) ∈ ℂ)
4745, 7, 46sylancr 589 . . . . 5 (𝜑 → (1 − 𝐵) ∈ ℂ)
48 abs1 14657 . . . . . . . . 9 (abs‘1) = 1
4948a1i 11 . . . . . . . 8 (𝜑 → (abs‘1) = 1)
507abscld 14796 . . . . . . . . 9 (𝜑 → (abs‘𝐵) ∈ ℝ)
5150, 8gtned 10775 . . . . . . . 8 (𝜑 → 1 ≠ (abs‘𝐵))
5249, 51eqnetrd 3083 . . . . . . 7 (𝜑 → (abs‘1) ≠ (abs‘𝐵))
53 fveq2 6670 . . . . . . . 8 (1 = 𝐵 → (abs‘1) = (abs‘𝐵))
5453necon3i 3048 . . . . . . 7 ((abs‘1) ≠ (abs‘𝐵) → 1 ≠ 𝐵)
5552, 54syl 17 . . . . . 6 (𝜑 → 1 ≠ 𝐵)
56 subeq0 10912 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 − 𝐵) = 0 ↔ 1 = 𝐵))
5745, 7, 56sylancr 589 . . . . . . 7 (𝜑 → ((1 − 𝐵) = 0 ↔ 1 = 𝐵))
5857necon3bid 3060 . . . . . 6 (𝜑 → ((1 − 𝐵) ≠ 0 ↔ 1 ≠ 𝐵))
5955, 58mpbird 259 . . . . 5 (𝜑 → (1 − 𝐵) ≠ 0)
606, 47, 59divrecd 11419 . . . 4 (𝜑 → (𝐶 / (1 − 𝐵)) = (𝐶 · (1 / (1 − 𝐵))))
6142, 44, 603brtr4d 5098 . . 3 (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵)))
6218znegcld 12090 . . . 4 (𝜑 → -𝐴 ∈ ℤ)
6322isershft 15020 . . . 4 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℤ) → (seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵))))
6418, 62, 63syl2anc 586 . . 3 (𝜑 → (seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵))))
6561, 64mpbird 259 . 2 (𝜑 → seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)))
663, 65eqbrtrid 5101 1 (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cmin 10870  -cneg 10871   / cdiv 11297  0cn0 11898  cz 11982  cuz 12244  seqcseq 13370  cexp 13430   shift cshi 14425  abscabs 14593  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043
This theorem is referenced by:  aaliou3lem3  24933
  Copyright terms: Public domain W3C validator