Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4a Structured version   Visualization version   GIF version

Theorem lighneallem4a 41850
Description: Lemma 1 for lighneallem4 41852. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4a ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆)

Proof of Theorem lighneallem4a
StepHypRef Expression
1 2re 11128 . . . . . . . 8 2 ∈ ℝ
21a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℝ)
3 eluzelre 11736 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
4 peano2re 10247 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
53, 4syl 17 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ∈ ℝ)
62, 5remulcld 10108 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · (𝐴 + 1)) ∈ ℝ)
76adantr 480 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ∈ ℝ)
8 eluzge2nn0 11765 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
98adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℕ0)
10 eluzge3nn 11768 . . . . . . . . 9 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ)
1110nnnn0d 11389 . . . . . . . 8 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ0)
1211adantl 481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℕ0)
139, 12nn0expcld 13071 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ∈ ℕ0)
1413nn0red 11390 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ∈ ℝ)
15 peano2re 10247 . . . . . 6 ((𝐴𝑀) ∈ ℝ → ((𝐴𝑀) + 1) ∈ ℝ)
1614, 15syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴𝑀) + 1) ∈ ℝ)
172, 3remulcld 10108 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
182, 17remulcld 10108 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · (2 · 𝐴)) ∈ ℝ)
1918adantr 480 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (2 · 𝐴)) ∈ ℝ)
20 1red 10093 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
21 eluz2nn 11764 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
2221nnge1d 11101 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 1 ≤ 𝐴)
2320, 3, 3, 22leadd2dd 10680 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≤ (𝐴 + 𝐴))
24 eluzelcn 11737 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
25242timesd 11313 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) = (𝐴 + 𝐴))
2623, 25breqtrrd 4713 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 + 1) ≤ (2 · 𝐴))
2726adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴 + 1) ≤ (2 · 𝐴))
28 2pos 11150 . . . . . . . . . . . 12 0 < 2
291, 28pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
3029a1i 11 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 0 < 2))
315, 17, 303jca 1261 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
3231adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
33 lemul2 10914 . . . . . . . 8 (((𝐴 + 1) ∈ ℝ ∧ (2 · 𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 + 1) ≤ (2 · 𝐴) ↔ (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴))))
3432, 33syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ≤ (2 · 𝐴) ↔ (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴))))
3527, 34mpbid 222 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ (2 · (2 · 𝐴)))
36 2cn 11129 . . . . . . . . 9 2 ∈ ℂ
3736a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ∈ ℂ)
3824adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℂ)
3937, 37, 38mulassd 10101 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
40 sq2 13000 . . . . . . . . . . . 12 (2↑2) = 4
41 4re 11135 . . . . . . . . . . . 12 4 ∈ ℝ
4240, 41eqeltri 2726 . . . . . . . . . . 11 (2↑2) ∈ ℝ
4342a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ∈ ℝ)
44 nn0sqcl 12927 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
458, 44syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℕ0)
4645nn0red 11390 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
4746adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑2) ∈ ℝ)
48 nnm1nn0 11372 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
4910, 48syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (𝑀 − 1) ∈ ℕ0)
5049adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝑀 − 1) ∈ ℕ0)
519, 50nn0expcld 13071 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) ∈ ℕ0)
5251nn0red 11390 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) ∈ ℝ)
53 2nn0 11347 . . . . . . . . . . . . . 14 2 ∈ ℕ0
5453a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℕ0)
552, 3, 543jca 1261 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0))
5655adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0))
57 0le2 11149 . . . . . . . . . . . 12 0 ≤ 2
5857a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 0 ≤ 2)
59 eluzle 11738 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ≤ 𝐴)
6059adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ 𝐴)
61 leexp1a 12959 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0) ∧ (0 ≤ 2 ∧ 2 ≤ 𝐴)) → (2↑2) ≤ (𝐴↑2))
6256, 58, 60, 61syl12anc 1364 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ≤ (𝐴↑2))
63 2p1e3 11189 . . . . . . . . . . . . . 14 (2 + 1) = 3
64 eluzle 11738 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
6563, 64syl5eqbr 4720 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (2 + 1) ≤ 𝑀)
66 1red 10093 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 1 ∈ ℝ)
67 eluzelre 11736 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℝ)
68 leaddsub 10542 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((2 + 1) ≤ 𝑀 ↔ 2 ≤ (𝑀 − 1)))
691, 66, 67, 68mp3an2i 1469 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → ((2 + 1) ≤ 𝑀 ↔ 2 ≤ (𝑀 − 1)))
7065, 69mpbid 222 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘3) → 2 ≤ (𝑀 − 1))
7170adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ (𝑀 − 1))
723adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ∈ ℝ)
73 2z 11447 . . . . . . . . . . . . 13 2 ∈ ℤ
7473a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ∈ ℤ)
75 eluzelz 11735 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℤ)
76 peano2zm 11458 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
7775, 76syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘3) → (𝑀 − 1) ∈ ℤ)
7877adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝑀 − 1) ∈ ℤ)
79 eluz2gt1 11798 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
8079adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 1 < 𝐴)
8172, 74, 78, 80leexp2d 13079 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 ≤ (𝑀 − 1) ↔ (𝐴↑2) ≤ (𝐴↑(𝑀 − 1))))
8271, 81mpbid 222 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑2) ≤ (𝐴↑(𝑀 − 1)))
8343, 47, 52, 62, 82letrd 10232 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2↑2) ≤ (𝐴↑(𝑀 − 1)))
8436sqvali 12983 . . . . . . . . . . 11 (2↑2) = (2 · 2)
8584eqcomi 2660 . . . . . . . . . 10 (2 · 2) = (2↑2)
8685a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · 2) = (2↑2))
87 eluz2n0 11766 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ≠ 0)
8887adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝐴 ≠ 0)
8975adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 𝑀 ∈ ℤ)
9038, 88, 89expm1d 13058 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴↑(𝑀 − 1)) = ((𝐴𝑀) / 𝐴))
9190eqcomd 2657 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴𝑀) / 𝐴) = (𝐴↑(𝑀 − 1)))
9283, 86, 913brtr4d 4717 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · 2) ≤ ((𝐴𝑀) / 𝐴))
931, 1remulcli 10092 . . . . . . . . 9 (2 · 2) ∈ ℝ
9421nngt0d 11102 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 0 < 𝐴)
953, 94jca 553 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
9695adantr 480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
97 lemuldiv 10941 . . . . . . . . 9 (((2 · 2) ∈ ℝ ∧ (𝐴𝑀) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (((2 · 2) · 𝐴) ≤ (𝐴𝑀) ↔ (2 · 2) ≤ ((𝐴𝑀) / 𝐴)))
9893, 14, 96, 97mp3an2i 1469 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (((2 · 2) · 𝐴) ≤ (𝐴𝑀) ↔ (2 · 2) ≤ ((𝐴𝑀) / 𝐴)))
9992, 98mpbird 247 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · 2) · 𝐴) ≤ (𝐴𝑀))
10039, 99eqbrtrrd 4709 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (2 · 𝐴)) ≤ (𝐴𝑀))
1017, 19, 14, 35, 100letrd 10232 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ (𝐴𝑀))
10214lep1d 10993 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (𝐴𝑀) ≤ ((𝐴𝑀) + 1))
1037, 14, 16, 101, 102letrd 10232 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → (2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1))
104 nnnn0 11337 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
105 nn0p1gt0 11360 . . . . . . . 8 (𝐴 ∈ ℕ0 → 0 < (𝐴 + 1))
10621, 104, 1053syl 18 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 < (𝐴 + 1))
1075, 106jca 553 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1)))
108107adantr 480 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1)))
109 lemuldiv 10941 . . . . 5 ((2 ∈ ℝ ∧ ((𝐴𝑀) + 1) ∈ ℝ ∧ ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1))) → ((2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1) ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
1101, 16, 108, 109mp3an2i 1469 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → ((2 · (𝐴 + 1)) ≤ ((𝐴𝑀) + 1) ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
111103, 110mpbid 222 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3)) → 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1)))
1121113adant3 1101 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1)))
113 breq2 4689 . . 3 (𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1)) → (2 ≤ 𝑆 ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
1141133ad2ant3 1104 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → (2 ≤ 𝑆 ↔ 2 ≤ (((𝐴𝑀) + 1) / (𝐴 + 1))))
115112, 114mpbird 247 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘3) ∧ 𝑆 = (((𝐴𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  3c3 11109  4c4 11110  0cn0 11330  cz 11415  cuz 11725  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901
This theorem is referenced by:  lighneallem4b  41851
  Copyright terms: Public domain W3C validator