MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0srg Structured version   Visualization version   GIF version

Theorem nn0srg 20615
Description: The nonnegative integers form a semiring (commutative by subcmn 18957). (Contributed by Thierry Arnoux, 1-May-2018.)
Assertion
Ref Expression
nn0srg (ℂflds0) ∈ SRing

Proof of Theorem nn0srg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 20567 . . . 4 fld ∈ Ring
2 ringcmn 19331 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
31, 2ax-mp 5 . . 3 fld ∈ CMnd
4 nn0subm 20600 . . 3 0 ∈ (SubMnd‘ℂfld)
5 eqid 2821 . . . 4 (ℂflds0) = (ℂflds0)
65submcmn 18958 . . 3 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
73, 4, 6mp2an 690 . 2 (ℂflds0) ∈ CMnd
8 nn0ex 11904 . . . 4 0 ∈ V
9 eqid 2821 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
105, 9mgpress 19250 . . . 4 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ V) → ((mulGrp‘ℂfld) ↾s0) = (mulGrp‘(ℂflds0)))
113, 8, 10mp2an 690 . . 3 ((mulGrp‘ℂfld) ↾s0) = (mulGrp‘(ℂflds0))
12 nn0sscn 11903 . . . . 5 0 ⊆ ℂ
13 1nn0 11914 . . . . 5 1 ∈ ℕ0
14 nn0mulcl 11934 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 · 𝑦) ∈ ℕ0)
1514rgen2 3203 . . . . 5 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0
169ringmgp 19303 . . . . . . 7 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
171, 16ax-mp 5 . . . . . 6 (mulGrp‘ℂfld) ∈ Mnd
18 cnfldbas 20549 . . . . . . . 8 ℂ = (Base‘ℂfld)
199, 18mgpbas 19245 . . . . . . 7 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 20570 . . . . . . . 8 1 = (1r‘ℂfld)
219, 20ringidval 19253 . . . . . . 7 1 = (0g‘(mulGrp‘ℂfld))
22 cnfldmul 20551 . . . . . . . 8 · = (.r‘ℂfld)
239, 22mgpplusg 19243 . . . . . . 7 · = (+g‘(mulGrp‘ℂfld))
2419, 21, 23issubm 17968 . . . . . 6 ((mulGrp‘ℂfld) ∈ Mnd → (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0)))
2517, 24ax-mp 5 . . . . 5 (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0))
2612, 13, 15, 25mpbir3an 1337 . . . 4 0 ∈ (SubMnd‘(mulGrp‘ℂfld))
27 eqid 2821 . . . . 5 ((mulGrp‘ℂfld) ↾s0) = ((mulGrp‘ℂfld) ↾s0)
2827submmnd 17978 . . . 4 (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) → ((mulGrp‘ℂfld) ↾s0) ∈ Mnd)
2926, 28ax-mp 5 . . 3 ((mulGrp‘ℂfld) ↾s0) ∈ Mnd
3011, 29eqeltrri 2910 . 2 (mulGrp‘(ℂflds0)) ∈ Mnd
31 simpl 485 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑥 ∈ ℕ0)
3231nn0cnd 11958 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑥 ∈ ℂ)
33 simprl 769 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
3433nn0cnd 11958 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑦 ∈ ℂ)
35 simprr 771 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑧 ∈ ℕ0)
3635nn0cnd 11958 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑧 ∈ ℂ)
3732, 34, 36adddid 10665 . . . . . 6 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
3832, 34, 36adddird 10666 . . . . . 6 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
3937, 38jca 514 . . . . 5 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4039ralrimivva 3191 . . . 4 (𝑥 ∈ ℕ0 → ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
41 nn0cn 11908 . . . . 5 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
4241mul02d 10838 . . . 4 (𝑥 ∈ ℕ0 → (0 · 𝑥) = 0)
4341mul01d 10839 . . . 4 (𝑥 ∈ ℕ0 → (𝑥 · 0) = 0)
4440, 42, 43jca32 518 . . 3 (𝑥 ∈ ℕ0 → (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)))
4544rgen 3148 . 2 𝑥 ∈ ℕ0 (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))
465, 18ressbas2 16555 . . . 4 (ℕ0 ⊆ ℂ → ℕ0 = (Base‘(ℂflds0)))
4712, 46ax-mp 5 . . 3 0 = (Base‘(ℂflds0))
48 eqid 2821 . . 3 (mulGrp‘(ℂflds0)) = (mulGrp‘(ℂflds0))
49 cnfldadd 20550 . . . . 5 + = (+g‘ℂfld)
505, 49ressplusg 16612 . . . 4 (ℕ0 ∈ V → + = (+g‘(ℂflds0)))
518, 50ax-mp 5 . . 3 + = (+g‘(ℂflds0))
525, 22ressmulr 16625 . . . 4 (ℕ0 ∈ V → · = (.r‘(ℂflds0)))
538, 52ax-mp 5 . . 3 · = (.r‘(ℂflds0))
54 ringmnd 19306 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
551, 54ax-mp 5 . . . 4 fld ∈ Mnd
56 0nn0 11913 . . . 4 0 ∈ ℕ0
57 cnfld0 20569 . . . . 5 0 = (0g‘ℂfld)
585, 18, 57ress0g 17939 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ℕ0 ⊆ ℂ) → 0 = (0g‘(ℂflds0)))
5955, 56, 12, 58mp3an 1457 . . 3 0 = (0g‘(ℂflds0))
6047, 48, 51, 53, 59issrg 19257 . 2 ((ℂflds0) ∈ SRing ↔ ((ℂflds0) ∈ CMnd ∧ (mulGrp‘(ℂflds0)) ∈ Mnd ∧ ∀𝑥 ∈ ℕ0 (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))))
617, 30, 45, 60mpbir3an 1337 1 (ℂflds0) ∈ SRing
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  wss 3936  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  0cn0 11898  Basecbs 16483  s cress 16484  +gcplusg 16565  .rcmulr 16566  0gc0g 16713  Mndcmnd 17911  SubMndcsubmnd 17955  CMndccmn 18906  mulGrpcmgp 19239  SRingcsrg 19255  Ringcrg 19297  fldccnfld 20545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-cring 19300  df-cnfld 20546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator