MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsumsupp Structured version   Visualization version   GIF version

Theorem regsumsupp 19882
Description: The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.)
Assertion
Ref Expression
regsumsupp ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉

Proof of Theorem regsumsupp
StepHypRef Expression
1 cnfldbas 19664 . . . 4 ℂ = (Base‘ℂfld)
2 cnfld0 19684 . . . 4 0 = (0g‘ℂfld)
3 cnring 19682 . . . . 5 fld ∈ Ring
4 ringcmn 18497 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
53, 4mp1i 13 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → ℂfld ∈ CMnd)
6 simp3 1061 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐼𝑉)
7 simp1 1059 . . . . 5 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐹:𝐼⟶ℝ)
8 ax-resscn 9938 . . . . 5 ℝ ⊆ ℂ
9 fss 6015 . . . . 5 ((𝐹:𝐼⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐼⟶ℂ)
107, 8, 9sylancl 693 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐹:𝐼⟶ℂ)
11 ssid 3608 . . . . 5 (𝐹 supp 0) ⊆ (𝐹 supp 0)
1211a1i 11 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 supp 0) ⊆ (𝐹 supp 0))
13 simp2 1060 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐹 finSupp 0)
141, 2, 5, 6, 10, 12, 13gsumres 18230 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg 𝐹))
15 cnfldadd 19665 . . . 4 + = (+g‘ℂfld)
16 df-refld 19865 . . . 4 fld = (ℂflds ℝ)
17 cnfldex 19663 . . . . 5 fld ∈ V
1817a1i 11 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → ℂfld ∈ V)
198a1i 11 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → ℝ ⊆ ℂ)
20 0red 9986 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 0 ∈ ℝ)
21 simpr 477 . . . . . 6 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
2221addid2d 10182 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
2321addid1d 10181 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥)
2422, 23jca 554 . . . 4 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
251, 15, 16, 18, 6, 19, 7, 20, 24gsumress 17192 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg 𝐹) = (ℝfld Σg 𝐹))
2614, 25eqtr2d 2661 . 2 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg 𝐹) = (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))))
27 suppssdm 7254 . . . . 5 (𝐹 supp 0) ⊆ dom 𝐹
28 fdm 6010 . . . . . 6 (𝐹:𝐼⟶ℝ → dom 𝐹 = 𝐼)
297, 28syl 17 . . . . 5 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → dom 𝐹 = 𝐼)
3027, 29syl5sseq 3637 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 supp 0) ⊆ 𝐼)
317, 30feqresmpt 6208 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 ↾ (𝐹 supp 0)) = (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹𝑥)))
3231oveq2d 6621 . 2 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹𝑥))))
33 id 22 . . . . 5 (𝐹 finSupp 0 → 𝐹 finSupp 0)
3433fsuppimpd 8227 . . . 4 (𝐹 finSupp 0 → (𝐹 supp 0) ∈ Fin)
35343ad2ant2 1081 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 supp 0) ∈ Fin)
36 simpl1 1062 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝐹:𝐼⟶ℝ)
3730sselda 3588 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝑥𝐼)
3836, 37ffvelrnd 6317 . . . 4 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹𝑥) ∈ ℝ)
3938recnd 10013 . . 3 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹𝑥) ∈ ℂ)
4035, 39gsumfsum 19727 . 2 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹𝑥))) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹𝑥))
4126, 32, 403eqtrd 2664 1 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  Vcvv 3191  wss 3560   class class class wbr 4618  cmpt 4678  dom cdm 5079  cres 5081  wf 5846  cfv 5850  (class class class)co 6605   supp csupp 7241  Fincfn 7900   finSupp cfsupp 8220  cc 9879  cr 9880  0cc0 9881   + caddc 9884  Σcsu 14345   Σg cgsu 16017  CMndccmn 18109  Ringcrg 18463  fldccnfld 19660  fldcrefld 19864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-sup 8293  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-rp 11777  df-fz 12266  df-fzo 12404  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-sum 14346  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-0g 16018  df-gsum 16019  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-grp 17341  df-minusg 17342  df-cntz 17666  df-cmn 18111  df-abl 18112  df-mgp 18406  df-ur 18418  df-ring 18465  df-cring 18466  df-cnfld 19661  df-refld 19865
This theorem is referenced by:  rrxcph  23083  rrxmval  23091  rrxtopnfi  39781
  Copyright terms: Public domain W3C validator