MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord Structured version   Visualization version   GIF version

Theorem tanord 24205
Description: The tangent function is strictly increasing on its principal domain. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanord ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))

Proof of Theorem tanord
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1484 . 2
2 fveq2 6153 . . 3 (𝑥 = 𝑦 → (tan‘𝑥) = (tan‘𝑦))
3 fveq2 6153 . . 3 (𝑥 = 𝐴 → (tan‘𝑥) = (tan‘𝐴))
4 fveq2 6153 . . 3 (𝑥 = 𝐵 → (tan‘𝑥) = (tan‘𝐵))
5 ioossre 12185 . . 3 (-(π / 2)(,)(π / 2)) ⊆ ℝ
6 elioore 12155 . . . . 5 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ ℝ)
76recnd 10020 . . . . . 6 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ ℂ)
86rered 13906 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑥) = 𝑥)
9 id 22 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
108, 9eqeltrd 2698 . . . . . 6 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑥) ∈ (-(π / 2)(,)(π / 2)))
11 cosne0 24197 . . . . . 6 ((𝑥 ∈ ℂ ∧ (ℜ‘𝑥) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝑥) ≠ 0)
127, 10, 11syl2anc 692 . . . . 5 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (cos‘𝑥) ≠ 0)
136, 12retancld 14811 . . . 4 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (tan‘𝑥) ∈ ℝ)
1413adantl 482 . . 3 ((⊤ ∧ 𝑥 ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝑥) ∈ ℝ)
1563ad2ant1 1080 . . . . . . . . . . . 12 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
1615adantr 481 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ ℝ)
1716recnd 10020 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ ℂ)
1817negnegd 10335 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → --𝑥 = 𝑥)
1918fveq2d 6157 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘--𝑥) = (tan‘𝑥))
2017negcld 10331 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → -𝑥 ∈ ℂ)
21 cosneg 14813 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (cos‘-𝑥) = (cos‘𝑥))
2217, 21syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘-𝑥) = (cos‘𝑥))
23 simpl1 1062 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
2423, 12syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘𝑥) ≠ 0)
2522, 24eqnetrd 2857 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘-𝑥) ≠ 0)
26 tanneg 14814 . . . . . . . . 9 ((-𝑥 ∈ ℂ ∧ (cos‘-𝑥) ≠ 0) → (tan‘--𝑥) = -(tan‘-𝑥))
2720, 25, 26syl2anc 692 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘--𝑥) = -(tan‘-𝑥))
2819, 27eqtr3d 2657 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘𝑥) = -(tan‘-𝑥))
2915adantr 481 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 ∈ ℝ)
3029renegcld 10409 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 ∈ ℝ)
3125adantrr 752 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (cos‘-𝑥) ≠ 0)
3230, 31retancld 14811 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘-𝑥) ∈ ℝ)
3332renegcld 10409 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) ∈ ℝ)
34 0red 9993 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 ∈ ℝ)
35 simp2 1060 . . . . . . . . . . . . 13 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
365, 35sseldi 3585 . . . . . . . . . . . 12 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
3736adantr 481 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ ℝ)
38 simpl2 1063 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
39 elioore 12155 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ ℝ)
4039recnd 10020 . . . . . . . . . . . . 13 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ ℂ)
4139rered 13906 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑦) = 𝑦)
42 id 22 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
4341, 42eqeltrd 2698 . . . . . . . . . . . . 13 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑦) ∈ (-(π / 2)(,)(π / 2)))
44 cosne0 24197 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ (ℜ‘𝑦) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝑦) ≠ 0)
4540, 43, 44syl2anc 692 . . . . . . . . . . . 12 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (cos‘𝑦) ≠ 0)
4638, 45syl 17 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (cos‘𝑦) ≠ 0)
4737, 46retancld 14811 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘𝑦) ∈ ℝ)
48 simprl 793 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 < 0)
4929lt0neg1d 10549 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (𝑥 < 0 ↔ 0 < -𝑥))
5048, 49mpbid 222 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < -𝑥)
51 simpl1 1062 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
52 eliooord 12183 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
5351, 52syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
5453simpld 475 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(π / 2) < 𝑥)
55 halfpire 24137 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ
56 ltnegcon1 10481 . . . . . . . . . . . . . . . 16 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
5755, 29, 56sylancr 694 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
5854, 57mpbid 222 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 < (π / 2))
59 0xr 10038 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
6055rexri 10049 . . . . . . . . . . . . . . 15 (π / 2) ∈ ℝ*
61 elioo2 12166 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-𝑥 ∈ (0(,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 < -𝑥 ∧ -𝑥 < (π / 2))))
6259, 60, 61mp2an 707 . . . . . . . . . . . . . 14 (-𝑥 ∈ (0(,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 < -𝑥 ∧ -𝑥 < (π / 2)))
6330, 50, 58, 62syl3anbrc 1244 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 ∈ (0(,)(π / 2)))
64 tanrpcl 24177 . . . . . . . . . . . . 13 (-𝑥 ∈ (0(,)(π / 2)) → (tan‘-𝑥) ∈ ℝ+)
6563, 64syl 17 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘-𝑥) ∈ ℝ+)
6665rpgt0d 11827 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < (tan‘-𝑥))
6732lt0neg2d 10550 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (0 < (tan‘-𝑥) ↔ -(tan‘-𝑥) < 0))
6866, 67mpbid 222 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) < 0)
69 simprr 795 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < 𝑦)
70 eliooord 12183 . . . . . . . . . . . . . . 15 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
7138, 70syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
7271simprd 479 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 < (π / 2))
73 elioo2 12166 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2))))
7459, 60, 73mp2an 707 . . . . . . . . . . . . 13 (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2)))
7537, 69, 72, 74syl3anbrc 1244 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ (0(,)(π / 2)))
76 tanrpcl 24177 . . . . . . . . . . . 12 (𝑦 ∈ (0(,)(π / 2)) → (tan‘𝑦) ∈ ℝ+)
7775, 76syl 17 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘𝑦) ∈ ℝ+)
7877rpgt0d 11827 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < (tan‘𝑦))
7933, 34, 47, 68, 78lttrd 10150 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) < (tan‘𝑦))
8079anassrs 679 . . . . . . . 8 ((((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) ∧ 0 < 𝑦) → -(tan‘-𝑥) < (tan‘𝑦))
81 simpl3 1064 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 < 𝑦)
8215adantr 481 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ∈ ℝ)
8336adantr 481 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ ℝ)
8482, 83ltnegd 10557 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 < 𝑦 ↔ -𝑦 < -𝑥))
8581, 84mpbid 222 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 < -𝑥)
8683renegcld 10409 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ ℝ)
87 simpr 477 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ≤ 0)
8883le0neg1d 10551 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦))
8987, 88mpbid 222 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 0 ≤ -𝑦)
90 simpl2 1063 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
9190, 70syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
9291simpld 475 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(π / 2) < 𝑦)
93 ltnegcon1 10481 . . . . . . . . . . . . . . . 16 (((π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-(π / 2) < 𝑦 ↔ -𝑦 < (π / 2)))
9455, 83, 93sylancr 694 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑦 ↔ -𝑦 < (π / 2)))
9592, 94mpbid 222 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 < (π / 2))
96 0re 9992 . . . . . . . . . . . . . . 15 0 ∈ ℝ
97 elico2 12187 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (-𝑦 ∈ (0[,)(π / 2)) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤ -𝑦 ∧ -𝑦 < (π / 2))))
9896, 60, 97mp2an 707 . . . . . . . . . . . . . 14 (-𝑦 ∈ (0[,)(π / 2)) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤ -𝑦 ∧ -𝑦 < (π / 2)))
9986, 89, 95, 98syl3anbrc 1244 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ (0[,)(π / 2)))
10082renegcld 10409 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 ∈ ℝ)
101 simp3 1061 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
102 0red 9993 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
103 ltletr 10081 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥 < 𝑦𝑦 ≤ 0) → 𝑥 < 0))
10415, 36, 102, 103syl3anc 1323 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → ((𝑥 < 𝑦𝑦 ≤ 0) → 𝑥 < 0))
105101, 104mpand 710 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑦 ≤ 0 → 𝑥 < 0))
106105imp 445 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 < 0)
107 ltle 10078 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑥 < 0 → 𝑥 ≤ 0))
10882, 96, 107sylancl 693 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 < 0 → 𝑥 ≤ 0))
109106, 108mpd 15 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ≤ 0)
11082le0neg1d 10551 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 ≤ 0 ↔ 0 ≤ -𝑥))
111109, 110mpbid 222 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 0 ≤ -𝑥)
112 simpl1 1062 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
113112, 52syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
114113simpld 475 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(π / 2) < 𝑥)
11555, 82, 56sylancr 694 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
116114, 115mpbid 222 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 < (π / 2))
117 elico2 12187 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (-𝑥 ∈ (0[,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 ≤ -𝑥 ∧ -𝑥 < (π / 2))))
11896, 60, 117mp2an 707 . . . . . . . . . . . . . 14 (-𝑥 ∈ (0[,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 ≤ -𝑥 ∧ -𝑥 < (π / 2)))
119100, 111, 116, 118syl3anbrc 1244 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 ∈ (0[,)(π / 2)))
120 tanord1 24204 . . . . . . . . . . . . 13 ((-𝑦 ∈ (0[,)(π / 2)) ∧ -𝑥 ∈ (0[,)(π / 2))) → (-𝑦 < -𝑥 ↔ (tan‘-𝑦) < (tan‘-𝑥)))
12199, 119, 120syl2anc 692 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-𝑦 < -𝑥 ↔ (tan‘-𝑦) < (tan‘-𝑥)))
12285, 121mpbid 222 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑦) < (tan‘-𝑥))
12383recnd 10020 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ ℂ)
124 cosneg 14813 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (cos‘-𝑦) = (cos‘𝑦))
125123, 124syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑦) = (cos‘𝑦))
12690, 45syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘𝑦) ≠ 0)
127125, 126eqnetrd 2857 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑦) ≠ 0)
12886, 127retancld 14811 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑦) ∈ ℝ)
129106, 25syldan 487 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑥) ≠ 0)
130100, 129retancld 14811 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑥) ∈ ℝ)
131128, 130ltnegd 10557 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → ((tan‘-𝑦) < (tan‘-𝑥) ↔ -(tan‘-𝑥) < -(tan‘-𝑦)))
132122, 131mpbid 222 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < -(tan‘-𝑦))
133123negnegd 10335 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → --𝑦 = 𝑦)
134133fveq2d 6157 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘--𝑦) = (tan‘𝑦))
135123negcld 10331 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ ℂ)
136 tanneg 14814 . . . . . . . . . . . 12 ((-𝑦 ∈ ℂ ∧ (cos‘-𝑦) ≠ 0) → (tan‘--𝑦) = -(tan‘-𝑦))
137135, 127, 136syl2anc 692 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘--𝑦) = -(tan‘-𝑦))
138134, 137eqtr3d 2657 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘𝑦) = -(tan‘-𝑦))
139132, 138breqtrrd 4646 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < (tan‘𝑦))
140139adantlr 750 . . . . . . . 8 ((((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < (tan‘𝑦))
141 0red 9993 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 0 ∈ ℝ)
142 simpl2 1063 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
1435, 142sseldi 3585 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑦 ∈ ℝ)
14480, 140, 141, 143ltlecasei 10097 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → -(tan‘-𝑥) < (tan‘𝑦))
14528, 144eqbrtrd 4640 . . . . . 6 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘𝑥) < (tan‘𝑦))
146 simpl3 1064 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 < 𝑦)
14715adantr 481 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ)
148 simpr 477 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ≤ 𝑥)
149 simpl1 1062 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
150149, 52syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
151150simprd 479 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 < (π / 2))
152 elico2 12187 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2))))
15396, 60, 152mp2an 707 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
154147, 148, 151, 153syl3anbrc 1244 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,)(π / 2)))
155 simpl2 1063 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
1565, 155sseldi 3585 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ ℝ)
157 0red 9993 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ∈ ℝ)
158147, 156, 146ltled 10137 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥𝑦)
159157, 147, 156, 148, 158letrd 10146 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ≤ 𝑦)
160155, 70syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
161160simprd 479 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 < (π / 2))
162 elico2 12187 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2))))
16396, 60, 162mp2an 707 . . . . . . . . 9 (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
164156, 159, 161, 163syl3anbrc 1244 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ (0[,)(π / 2)))
165 tanord1 24204 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (tan‘𝑥) < (tan‘𝑦)))
166154, 164, 165syl2anc 692 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (𝑥 < 𝑦 ↔ (tan‘𝑥) < (tan‘𝑦)))
167146, 166mpbid 222 . . . . . 6 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (tan‘𝑥) < (tan‘𝑦))
168145, 167, 15, 102ltlecasei 10097 . . . . 5 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) < (tan‘𝑦))
1691683expia 1264 . . . 4 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
170169adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
1712, 3, 4, 5, 14, 170ltord1 10506 . 2 ((⊤ ∧ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2)))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
1721, 171mpan 705 1 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wtru 1481  wcel 1987  wne 2790   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  0cc0 9888  *cxr 10025   < clt 10026  cle 10027  -cneg 10219   / cdiv 10636  2c2 11022  +crp 11784  (,)cioo 12125  [,)cico 12127  cre 13779  cosccos 14731  tanctan 14732  πcpi 14733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734  df-sin 14736  df-cos 14737  df-tan 14738  df-pi 14739  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554
This theorem is referenced by:  atanlogsublem  24559  atanord  24571  basellem4  24727
  Copyright terms: Public domain W3C validator