MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosne0 Structured version   Visualization version   GIF version

Theorem cosne0 25114
Description: The cosine function has no zeroes within the vertical strip of the complex plane between real part -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
cosne0 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)

Proof of Theorem cosne0
StepHypRef Expression
1 halfpire 25050 . . . . . 6 (π / 2) ∈ ℝ
21recni 10655 . . . . 5 (π / 2) ∈ ℂ
3 simpl 485 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
4 nncan 10915 . . . . 5 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
52, 3, 4sylancr 589 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
65fveq2d 6674 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (cos‘𝐴))
7 subcl 10885 . . . . 5 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − 𝐴) ∈ ℂ)
82, 3, 7sylancr 589 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((π / 2) − 𝐴) ∈ ℂ)
9 coshalfpim 25081 . . . 4 (((π / 2) − 𝐴) ∈ ℂ → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
108, 9syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
116, 10eqtr3d 2858 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) = (sin‘((π / 2) − 𝐴)))
125adantr 483 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
13 picn 25045 . . . . . . . . . . . . 13 π ∈ ℂ
1413a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℂ)
15 pire 25044 . . . . . . . . . . . . . 14 π ∈ ℝ
16 pipos 25046 . . . . . . . . . . . . . 14 0 < π
1715, 16gt0ne0ii 11176 . . . . . . . . . . . . 13 π ≠ 0
1817a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ≠ 0)
198, 14, 18divcan1d 11417 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((((π / 2) − 𝐴) / π) · π) = ((π / 2) − 𝐴))
2019adantr 483 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((((π / 2) − 𝐴) / π) · π) = ((π / 2) − 𝐴))
21 zre 11986 . . . . . . . . . . . 12 ((((π / 2) − 𝐴) / π) ∈ ℤ → (((π / 2) − 𝐴) / π) ∈ ℝ)
2221adantl 484 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → (((π / 2) − 𝐴) / π) ∈ ℝ)
23 remulcl 10622 . . . . . . . . . . 11 (((((π / 2) − 𝐴) / π) ∈ ℝ ∧ π ∈ ℝ) → ((((π / 2) − 𝐴) / π) · π) ∈ ℝ)
2422, 15, 23sylancl 588 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((((π / 2) − 𝐴) / π) · π) ∈ ℝ)
2520, 24eqeltrrd 2914 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2) − 𝐴) ∈ ℝ)
26 resubcl 10950 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ ((π / 2) − 𝐴) ∈ ℝ) → ((π / 2) − ((π / 2) − 𝐴)) ∈ ℝ)
271, 25, 26sylancr 589 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2) − ((π / 2) − 𝐴)) ∈ ℝ)
2812, 27eqeltrrd 2914 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → 𝐴 ∈ ℝ)
2928rered 14583 . . . . . 6 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → (ℜ‘𝐴) = 𝐴)
30 simplr 767 . . . . . 6 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
3129, 30eqeltrrd 2914 . . . . 5 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → 𝐴 ∈ (-(π / 2)(,)(π / 2)))
32 0zd 11994 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 ∈ ℤ)
33 elioore 12769 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ)
34 resubcl 10950 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ)
351, 33, 34sylancr 589 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) ∈ ℝ)
3615a1i 11 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → π ∈ ℝ)
37 eliooord 12797 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝐴𝐴 < (π / 2)))
3837simprd 498 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 < (π / 2))
39 posdif 11133 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴)))
4033, 1, 39sylancl 588 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴)))
4138, 40mpbid 234 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < ((π / 2) − 𝐴))
4216a1i 11 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < π)
4335, 36, 41, 42divgt0d 11575 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (((π / 2) − 𝐴) / π))
441a1i 11 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (π / 2) ∈ ℝ)
452negcli 10954 . . . . . . . . . . . 12 -(π / 2) ∈ ℂ
4613, 2negsubi 10964 . . . . . . . . . . . . 13 (π + -(π / 2)) = (π − (π / 2))
47 pidiv2halves 25053 . . . . . . . . . . . . . 14 ((π / 2) + (π / 2)) = π
4813, 2, 2, 47subaddrii 10975 . . . . . . . . . . . . 13 (π − (π / 2)) = (π / 2)
4946, 48eqtri 2844 . . . . . . . . . . . 12 (π + -(π / 2)) = (π / 2)
502, 13, 45, 49subaddrii 10975 . . . . . . . . . . 11 ((π / 2) − π) = -(π / 2)
5137simpld 497 . . . . . . . . . . 11 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → -(π / 2) < 𝐴)
5250, 51eqbrtrid 5101 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − π) < 𝐴)
5344, 36, 33, 52ltsub23d 11245 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) < π)
5413mulid1i 10645 . . . . . . . . 9 (π · 1) = π
5553, 54breqtrrdi 5108 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) < (π · 1))
56 1red 10642 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 1 ∈ ℝ)
57 ltdivmul 11515 . . . . . . . . 9 ((((π / 2) − 𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → ((((π / 2) − 𝐴) / π) < 1 ↔ ((π / 2) − 𝐴) < (π · 1)))
5835, 56, 36, 42, 57syl112anc 1370 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((((π / 2) − 𝐴) / π) < 1 ↔ ((π / 2) − 𝐴) < (π · 1)))
5955, 58mpbird 259 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (((π / 2) − 𝐴) / π) < 1)
60 1e0p1 12141 . . . . . . 7 1 = (0 + 1)
6159, 60breqtrdi 5107 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (((π / 2) − 𝐴) / π) < (0 + 1))
62 btwnnz 12059 . . . . . 6 ((0 ∈ ℤ ∧ 0 < (((π / 2) − 𝐴) / π) ∧ (((π / 2) − 𝐴) / π) < (0 + 1)) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
6332, 43, 61, 62syl3anc 1367 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
6431, 63syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
6564pm2.01da 797 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
66 sineq0 25109 . . . . 5 (((π / 2) − 𝐴) ∈ ℂ → ((sin‘((π / 2) − 𝐴)) = 0 ↔ (((π / 2) − 𝐴) / π) ∈ ℤ))
678, 66syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((sin‘((π / 2) − 𝐴)) = 0 ↔ (((π / 2) − 𝐴) / π) ∈ ℤ))
6867necon3abid 3052 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((sin‘((π / 2) − 𝐴)) ≠ 0 ↔ ¬ (((π / 2) − 𝐴) / π) ∈ ℤ))
6965, 68mpbird 259 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘((π / 2) − 𝐴)) ≠ 0)
7011, 69eqnetrd 3083 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cmin 10870  -cneg 10871   / cdiv 11297  2c2 11693  cz 11982  (,)cioo 12739  cre 14456  sincsin 15417  cosccos 15418  πcpi 15420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465
This theorem is referenced by:  tanord  25122  tanregt0  25123  atantan  25501  tan2h  34899  fourierdlem62  42502
  Copyright terms: Public domain W3C validator