![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > 1dom1el | GIF version |
Description: If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.) |
Ref | Expression |
---|---|
1dom1el | ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 6805 | . . 3 ⊢ (𝐴 ≼ 1o → ∃𝑓 𝑓:𝐴–1-1→1o) | |
2 | 1 | 3ad2ant1 1020 | . 2 ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃𝑓 𝑓:𝐴–1-1→1o) |
3 | f1f 5460 | . . . . . . 7 ⊢ (𝑓:𝐴–1-1→1o → 𝑓:𝐴⟶1o) | |
4 | 3 | adantl 277 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝑓:𝐴⟶1o) |
5 | simpl2 1003 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐵 ∈ 𝐴) | |
6 | 4, 5 | ffvelcdmd 5695 | . . . . 5 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) ∈ 1o) |
7 | el1o 6492 | . . . . 5 ⊢ ((𝑓‘𝐵) ∈ 1o ↔ (𝑓‘𝐵) = ∅) | |
8 | 6, 7 | sylib 122 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) = ∅) |
9 | simpl3 1004 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐶 ∈ 𝐴) | |
10 | 4, 9 | ffvelcdmd 5695 | . . . . 5 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐶) ∈ 1o) |
11 | el1o 6492 | . . . . 5 ⊢ ((𝑓‘𝐶) ∈ 1o ↔ (𝑓‘𝐶) = ∅) | |
12 | 10, 11 | sylib 122 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐶) = ∅) |
13 | 8, 12 | eqtr4d 2229 | . . 3 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) = (𝑓‘𝐶)) |
14 | simpr 110 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝑓:𝐴–1-1→1o) | |
15 | f1veqaeq 5813 | . . . 4 ⊢ ((𝑓:𝐴–1-1→1o ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝑓‘𝐵) = (𝑓‘𝐶) → 𝐵 = 𝐶)) | |
16 | 14, 5, 9, 15 | syl12anc 1247 | . . 3 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → ((𝑓‘𝐵) = (𝑓‘𝐶) → 𝐵 = 𝐶)) |
17 | 13, 16 | mpd 13 | . 2 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐵 = 𝐶) |
18 | 2, 17 | exlimddv 1910 | 1 ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∅c0 3447 class class class wbr 4030 ⟶wf 5251 –1-1→wf1 5252 ‘cfv 5255 1oc1o 6464 ≼ cdom 6795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fv 5263 df-1o 6471 df-dom 6798 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |