| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 1dom1el | GIF version | ||
| Description: If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.) |
| Ref | Expression |
|---|---|
| 1dom1el | ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6838 | . . 3 ⊢ (𝐴 ≼ 1o → ∃𝑓 𝑓:𝐴–1-1→1o) | |
| 2 | 1 | 3ad2ant1 1021 | . 2 ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃𝑓 𝑓:𝐴–1-1→1o) |
| 3 | f1f 5481 | . . . . . . 7 ⊢ (𝑓:𝐴–1-1→1o → 𝑓:𝐴⟶1o) | |
| 4 | 3 | adantl 277 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝑓:𝐴⟶1o) |
| 5 | simpl2 1004 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐵 ∈ 𝐴) | |
| 6 | 4, 5 | ffvelcdmd 5716 | . . . . 5 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) ∈ 1o) |
| 7 | el1o 6523 | . . . . 5 ⊢ ((𝑓‘𝐵) ∈ 1o ↔ (𝑓‘𝐵) = ∅) | |
| 8 | 6, 7 | sylib 122 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) = ∅) |
| 9 | simpl3 1005 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐶 ∈ 𝐴) | |
| 10 | 4, 9 | ffvelcdmd 5716 | . . . . 5 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐶) ∈ 1o) |
| 11 | el1o 6523 | . . . . 5 ⊢ ((𝑓‘𝐶) ∈ 1o ↔ (𝑓‘𝐶) = ∅) | |
| 12 | 10, 11 | sylib 122 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐶) = ∅) |
| 13 | 8, 12 | eqtr4d 2241 | . . 3 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) = (𝑓‘𝐶)) |
| 14 | simpr 110 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝑓:𝐴–1-1→1o) | |
| 15 | f1veqaeq 5838 | . . . 4 ⊢ ((𝑓:𝐴–1-1→1o ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝑓‘𝐵) = (𝑓‘𝐶) → 𝐵 = 𝐶)) | |
| 16 | 14, 5, 9, 15 | syl12anc 1248 | . . 3 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → ((𝑓‘𝐵) = (𝑓‘𝐶) → 𝐵 = 𝐶)) |
| 17 | 13, 16 | mpd 13 | . 2 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐵 = 𝐶) |
| 18 | 2, 17 | exlimddv 1922 | 1 ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∃wex 1515 ∈ wcel 2176 ∅c0 3460 class class class wbr 4044 ⟶wf 5267 –1-1→wf1 5268 ‘cfv 5271 1oc1o 6495 ≼ cdom 6826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fv 5279 df-1o 6502 df-dom 6829 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |