Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  1dom1el GIF version

Theorem 1dom1el 16312
Description: If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
Assertion
Ref Expression
1dom1el ((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) → 𝐵 = 𝐶)

Proof of Theorem 1dom1el
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 6896 . . 3 (𝐴 ≼ 1o → ∃𝑓 𝑓:𝐴1-1→1o)
213ad2ant1 1042 . 2 ((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) → ∃𝑓 𝑓:𝐴1-1→1o)
3 f1f 5530 . . . . . . 7 (𝑓:𝐴1-1→1o𝑓:𝐴⟶1o)
43adantl 277 . . . . . 6 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → 𝑓:𝐴⟶1o)
5 simpl2 1025 . . . . . 6 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → 𝐵𝐴)
64, 5ffvelcdmd 5770 . . . . 5 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → (𝑓𝐵) ∈ 1o)
7 el1o 6581 . . . . 5 ((𝑓𝐵) ∈ 1o ↔ (𝑓𝐵) = ∅)
86, 7sylib 122 . . . 4 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → (𝑓𝐵) = ∅)
9 simpl3 1026 . . . . . 6 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → 𝐶𝐴)
104, 9ffvelcdmd 5770 . . . . 5 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → (𝑓𝐶) ∈ 1o)
11 el1o 6581 . . . . 5 ((𝑓𝐶) ∈ 1o ↔ (𝑓𝐶) = ∅)
1210, 11sylib 122 . . . 4 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → (𝑓𝐶) = ∅)
138, 12eqtr4d 2265 . . 3 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → (𝑓𝐵) = (𝑓𝐶))
14 simpr 110 . . . 4 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → 𝑓:𝐴1-1→1o)
15 f1veqaeq 5892 . . . 4 ((𝑓:𝐴1-1→1o ∧ (𝐵𝐴𝐶𝐴)) → ((𝑓𝐵) = (𝑓𝐶) → 𝐵 = 𝐶))
1614, 5, 9, 15syl12anc 1269 . . 3 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → ((𝑓𝐵) = (𝑓𝐶) → 𝐵 = 𝐶))
1713, 16mpd 13 . 2 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → 𝐵 = 𝐶)
182, 17exlimddv 1945 1 ((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) → 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wex 1538  wcel 2200  c0 3491   class class class wbr 4082  wf 5313  1-1wf1 5314  cfv 5317  1oc1o 6553  cdom 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fv 5325  df-1o 6560  df-dom 6887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator