![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > 1dom1el | GIF version |
Description: If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.) |
Ref | Expression |
---|---|
1dom1el | ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 6770 | . . 3 ⊢ (𝐴 ≼ 1o → ∃𝑓 𝑓:𝐴–1-1→1o) | |
2 | 1 | 3ad2ant1 1020 | . 2 ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃𝑓 𝑓:𝐴–1-1→1o) |
3 | f1f 5437 | . . . . . . 7 ⊢ (𝑓:𝐴–1-1→1o → 𝑓:𝐴⟶1o) | |
4 | 3 | adantl 277 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝑓:𝐴⟶1o) |
5 | simpl2 1003 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐵 ∈ 𝐴) | |
6 | 4, 5 | ffvelcdmd 5669 | . . . . 5 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) ∈ 1o) |
7 | el1o 6457 | . . . . 5 ⊢ ((𝑓‘𝐵) ∈ 1o ↔ (𝑓‘𝐵) = ∅) | |
8 | 6, 7 | sylib 122 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) = ∅) |
9 | simpl3 1004 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐶 ∈ 𝐴) | |
10 | 4, 9 | ffvelcdmd 5669 | . . . . 5 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐶) ∈ 1o) |
11 | el1o 6457 | . . . . 5 ⊢ ((𝑓‘𝐶) ∈ 1o ↔ (𝑓‘𝐶) = ∅) | |
12 | 10, 11 | sylib 122 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐶) = ∅) |
13 | 8, 12 | eqtr4d 2225 | . . 3 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) = (𝑓‘𝐶)) |
14 | simpr 110 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝑓:𝐴–1-1→1o) | |
15 | f1veqaeq 5787 | . . . 4 ⊢ ((𝑓:𝐴–1-1→1o ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝑓‘𝐵) = (𝑓‘𝐶) → 𝐵 = 𝐶)) | |
16 | 14, 5, 9, 15 | syl12anc 1247 | . . 3 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → ((𝑓‘𝐵) = (𝑓‘𝐶) → 𝐵 = 𝐶)) |
17 | 13, 16 | mpd 13 | . 2 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐵 = 𝐶) |
18 | 2, 17 | exlimddv 1910 | 1 ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ∅c0 3437 class class class wbr 4018 ⟶wf 5228 –1-1→wf1 5229 ‘cfv 5232 1oc1o 6429 ≼ cdom 6760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4308 df-suc 4386 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fv 5240 df-1o 6436 df-dom 6763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |