Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  1dom1el GIF version

Theorem 1dom1el 15889
Description: If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
Assertion
Ref Expression
1dom1el ((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) → 𝐵 = 𝐶)

Proof of Theorem 1dom1el
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 6837 . . 3 (𝐴 ≼ 1o → ∃𝑓 𝑓:𝐴1-1→1o)
213ad2ant1 1020 . 2 ((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) → ∃𝑓 𝑓:𝐴1-1→1o)
3 f1f 5480 . . . . . . 7 (𝑓:𝐴1-1→1o𝑓:𝐴⟶1o)
43adantl 277 . . . . . 6 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → 𝑓:𝐴⟶1o)
5 simpl2 1003 . . . . . 6 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → 𝐵𝐴)
64, 5ffvelcdmd 5715 . . . . 5 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → (𝑓𝐵) ∈ 1o)
7 el1o 6522 . . . . 5 ((𝑓𝐵) ∈ 1o ↔ (𝑓𝐵) = ∅)
86, 7sylib 122 . . . 4 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → (𝑓𝐵) = ∅)
9 simpl3 1004 . . . . . 6 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → 𝐶𝐴)
104, 9ffvelcdmd 5715 . . . . 5 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → (𝑓𝐶) ∈ 1o)
11 el1o 6522 . . . . 5 ((𝑓𝐶) ∈ 1o ↔ (𝑓𝐶) = ∅)
1210, 11sylib 122 . . . 4 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → (𝑓𝐶) = ∅)
138, 12eqtr4d 2240 . . 3 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → (𝑓𝐵) = (𝑓𝐶))
14 simpr 110 . . . 4 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → 𝑓:𝐴1-1→1o)
15 f1veqaeq 5837 . . . 4 ((𝑓:𝐴1-1→1o ∧ (𝐵𝐴𝐶𝐴)) → ((𝑓𝐵) = (𝑓𝐶) → 𝐵 = 𝐶))
1614, 5, 9, 15syl12anc 1247 . . 3 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → ((𝑓𝐵) = (𝑓𝐶) → 𝐵 = 𝐶))
1713, 16mpd 13 . 2 (((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) ∧ 𝑓:𝐴1-1→1o) → 𝐵 = 𝐶)
182, 17exlimddv 1921 1 ((𝐴 ≼ 1o𝐵𝐴𝐶𝐴) → 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wex 1514  wcel 2175  c0 3459   class class class wbr 4043  wf 5266  1-1wf1 5267  cfv 5270  1oc1o 6494  cdom 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fv 5278  df-1o 6501  df-dom 6828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator