| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 1dom1el | GIF version | ||
| Description: If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.) |
| Ref | Expression |
|---|---|
| 1dom1el | ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6896 | . . 3 ⊢ (𝐴 ≼ 1o → ∃𝑓 𝑓:𝐴–1-1→1o) | |
| 2 | 1 | 3ad2ant1 1042 | . 2 ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃𝑓 𝑓:𝐴–1-1→1o) |
| 3 | f1f 5530 | . . . . . . 7 ⊢ (𝑓:𝐴–1-1→1o → 𝑓:𝐴⟶1o) | |
| 4 | 3 | adantl 277 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝑓:𝐴⟶1o) |
| 5 | simpl2 1025 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐵 ∈ 𝐴) | |
| 6 | 4, 5 | ffvelcdmd 5770 | . . . . 5 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) ∈ 1o) |
| 7 | el1o 6581 | . . . . 5 ⊢ ((𝑓‘𝐵) ∈ 1o ↔ (𝑓‘𝐵) = ∅) | |
| 8 | 6, 7 | sylib 122 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) = ∅) |
| 9 | simpl3 1026 | . . . . . 6 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐶 ∈ 𝐴) | |
| 10 | 4, 9 | ffvelcdmd 5770 | . . . . 5 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐶) ∈ 1o) |
| 11 | el1o 6581 | . . . . 5 ⊢ ((𝑓‘𝐶) ∈ 1o ↔ (𝑓‘𝐶) = ∅) | |
| 12 | 10, 11 | sylib 122 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐶) = ∅) |
| 13 | 8, 12 | eqtr4d 2265 | . . 3 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → (𝑓‘𝐵) = (𝑓‘𝐶)) |
| 14 | simpr 110 | . . . 4 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝑓:𝐴–1-1→1o) | |
| 15 | f1veqaeq 5892 | . . . 4 ⊢ ((𝑓:𝐴–1-1→1o ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝑓‘𝐵) = (𝑓‘𝐶) → 𝐵 = 𝐶)) | |
| 16 | 14, 5, 9, 15 | syl12anc 1269 | . . 3 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → ((𝑓‘𝐵) = (𝑓‘𝐶) → 𝐵 = 𝐶)) |
| 17 | 13, 16 | mpd 13 | . 2 ⊢ (((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ 𝑓:𝐴–1-1→1o) → 𝐵 = 𝐶) |
| 18 | 2, 17 | exlimddv 1945 | 1 ⊢ ((𝐴 ≼ 1o ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∅c0 3491 class class class wbr 4082 ⟶wf 5313 –1-1→wf1 5314 ‘cfv 5317 1oc1o 6553 ≼ cdom 6884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fv 5325 df-1o 6560 df-dom 6887 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |