ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndvalg Unicode version

Theorem 2ndvalg 6228
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
2ndvalg  |-  ( A  e.  _V  ->  ( 2nd `  A )  = 
U. ran  { A } )

Proof of Theorem 2ndvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 snexg 4227 . . 3  |-  ( A  e.  _V  ->  { A }  e.  _V )
2 rnexg 4942 . . 3  |-  ( { A }  e.  _V  ->  ran  { A }  e.  _V )
3 uniexg 4485 . . 3  |-  ( ran 
{ A }  e.  _V  ->  U. ran  { A }  e.  _V )
41, 2, 33syl 17 . 2  |-  ( A  e.  _V  ->  U. ran  { A }  e.  _V )
5 sneq 3643 . . . . 5  |-  ( x  =  A  ->  { x }  =  { A } )
65rneqd 4906 . . . 4  |-  ( x  =  A  ->  ran  { x }  =  ran  { A } )
76unieqd 3860 . . 3  |-  ( x  =  A  ->  U. ran  { x }  =  U. ran  { A } )
8 df-2nd 6226 . . 3  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
97, 8fvmptg 5654 . 2  |-  ( ( A  e.  _V  /\  U.
ran  { A }  e.  _V )  ->  ( 2nd `  A )  =  U. ran  { A } )
104, 9mpdan 421 1  |-  ( A  e.  _V  ->  ( 2nd `  A )  = 
U. ran  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771   {csn 3632   U.cuni 3849   ran crn 4675   ` cfv 5270   2ndc2nd 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fv 5278  df-2nd 6226
This theorem is referenced by:  2nd0  6230  op2nd  6232  elxp6  6254
  Copyright terms: Public domain W3C validator