ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndvalg Unicode version

Theorem 2ndvalg 6229
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
2ndvalg  |-  ( A  e.  _V  ->  ( 2nd `  A )  = 
U. ran  { A } )

Proof of Theorem 2ndvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 snexg 4228 . . 3  |-  ( A  e.  _V  ->  { A }  e.  _V )
2 rnexg 4943 . . 3  |-  ( { A }  e.  _V  ->  ran  { A }  e.  _V )
3 uniexg 4486 . . 3  |-  ( ran 
{ A }  e.  _V  ->  U. ran  { A }  e.  _V )
41, 2, 33syl 17 . 2  |-  ( A  e.  _V  ->  U. ran  { A }  e.  _V )
5 sneq 3644 . . . . 5  |-  ( x  =  A  ->  { x }  =  { A } )
65rneqd 4907 . . . 4  |-  ( x  =  A  ->  ran  { x }  =  ran  { A } )
76unieqd 3861 . . 3  |-  ( x  =  A  ->  U. ran  { x }  =  U. ran  { A } )
8 df-2nd 6227 . . 3  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
97, 8fvmptg 5655 . 2  |-  ( ( A  e.  _V  /\  U.
ran  { A }  e.  _V )  ->  ( 2nd `  A )  =  U. ran  { A } )
104, 9mpdan 421 1  |-  ( A  e.  _V  ->  ( 2nd `  A )  = 
U. ran  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772   {csn 3633   U.cuni 3850   ran crn 4676   ` cfv 5271   2ndc2nd 6225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-2nd 6227
This theorem is referenced by:  2nd0  6231  op2nd  6233  elxp6  6255
  Copyright terms: Public domain W3C validator