ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndvalg Unicode version

Theorem 2ndvalg 6289
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
2ndvalg  |-  ( A  e.  _V  ->  ( 2nd `  A )  = 
U. ran  { A } )

Proof of Theorem 2ndvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 snexg 4268 . . 3  |-  ( A  e.  _V  ->  { A }  e.  _V )
2 rnexg 4989 . . 3  |-  ( { A }  e.  _V  ->  ran  { A }  e.  _V )
3 uniexg 4530 . . 3  |-  ( ran 
{ A }  e.  _V  ->  U. ran  { A }  e.  _V )
41, 2, 33syl 17 . 2  |-  ( A  e.  _V  ->  U. ran  { A }  e.  _V )
5 sneq 3677 . . . . 5  |-  ( x  =  A  ->  { x }  =  { A } )
65rneqd 4953 . . . 4  |-  ( x  =  A  ->  ran  { x }  =  ran  { A } )
76unieqd 3899 . . 3  |-  ( x  =  A  ->  U. ran  { x }  =  U. ran  { A } )
8 df-2nd 6287 . . 3  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
97, 8fvmptg 5710 . 2  |-  ( ( A  e.  _V  /\  U.
ran  { A }  e.  _V )  ->  ( 2nd `  A )  =  U. ran  { A } )
104, 9mpdan 421 1  |-  ( A  e.  _V  ->  ( 2nd `  A )  = 
U. ran  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   U.cuni 3888   ran crn 4720   ` cfv 5318   2ndc2nd 6285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-2nd 6287
This theorem is referenced by:  2nd0  6291  op2nd  6293  elxp6  6315
  Copyright terms: Public domain W3C validator