ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abexex Unicode version

Theorem abexex 6126
Description: A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
Hypotheses
Ref Expression
abexex.1  |-  A  e. 
_V
abexex.2  |-  ( ph  ->  x  e.  A )
abexex.3  |-  { y  |  ph }  e.  _V
Assertion
Ref Expression
abexex  |-  { y  |  E. x ph }  e.  _V
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem abexex
StepHypRef Expression
1 df-rex 2461 . . . 4  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 abexex.2 . . . . . 6  |-  ( ph  ->  x  e.  A )
32pm4.71ri 392 . . . . 5  |-  ( ph  <->  ( x  e.  A  /\  ph ) )
43exbii 1605 . . . 4  |-  ( E. x ph  <->  E. x
( x  e.  A  /\  ph ) )
51, 4bitr4i 187 . . 3  |-  ( E. x  e.  A  ph  <->  E. x ph )
65abbii 2293 . 2  |-  { y  |  E. x  e.  A  ph }  =  { y  |  E. x ph }
7 abexex.1 . . 3  |-  A  e. 
_V
8 abexex.3 . . 3  |-  { y  |  ph }  e.  _V
97, 8abrexex2 6124 . 2  |-  { y  |  E. x  e.  A  ph }  e.  _V
106, 9eqeltrri 2251 1  |-  { y  |  E. x ph }  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1492    e. wcel 2148   {cab 2163   E.wrex 2456   _Vcvv 2737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator