ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abexex Unicode version

Theorem abexex 6105
Description: A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
Hypotheses
Ref Expression
abexex.1  |-  A  e. 
_V
abexex.2  |-  ( ph  ->  x  e.  A )
abexex.3  |-  { y  |  ph }  e.  _V
Assertion
Ref Expression
abexex  |-  { y  |  E. x ph }  e.  _V
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem abexex
StepHypRef Expression
1 df-rex 2454 . . . 4  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 abexex.2 . . . . . 6  |-  ( ph  ->  x  e.  A )
32pm4.71ri 390 . . . . 5  |-  ( ph  <->  ( x  e.  A  /\  ph ) )
43exbii 1598 . . . 4  |-  ( E. x ph  <->  E. x
( x  e.  A  /\  ph ) )
51, 4bitr4i 186 . . 3  |-  ( E. x  e.  A  ph  <->  E. x ph )
65abbii 2286 . 2  |-  { y  |  E. x  e.  A  ph }  =  { y  |  E. x ph }
7 abexex.1 . . 3  |-  A  e. 
_V
8 abexex.3 . . 3  |-  { y  |  ph }  e.  _V
97, 8abrexex2 6103 . 2  |-  { y  |  E. x  e.  A  ph }  e.  _V
106, 9eqeltrri 2244 1  |-  { y  |  E. x ph }  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1485    e. wcel 2141   {cab 2156   E.wrex 2449   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator