ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abexex GIF version

Theorem abexex 6140
Description: A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
Hypotheses
Ref Expression
abexex.1 𝐴 ∈ V
abexex.2 (𝜑𝑥𝐴)
abexex.3 {𝑦𝜑} ∈ V
Assertion
Ref Expression
abexex {𝑦 ∣ ∃𝑥𝜑} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abexex
StepHypRef Expression
1 df-rex 2471 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 abexex.2 . . . . . 6 (𝜑𝑥𝐴)
32pm4.71ri 392 . . . . 5 (𝜑 ↔ (𝑥𝐴𝜑))
43exbii 1615 . . . 4 (∃𝑥𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
51, 4bitr4i 187 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝜑)
65abbii 2303 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝜑}
7 abexex.1 . . 3 𝐴 ∈ V
8 abexex.3 . . 3 {𝑦𝜑} ∈ V
97, 8abrexex2 6138 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
106, 9eqeltrri 2261 1 {𝑦 ∣ ∃𝑥𝜑} ∈ V
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1502  wcel 2158  {cab 2173  wrex 2466  Vcvv 2749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator