ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abexex GIF version

Theorem abexex 6178
Description: A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
Hypotheses
Ref Expression
abexex.1 𝐴 ∈ V
abexex.2 (𝜑𝑥𝐴)
abexex.3 {𝑦𝜑} ∈ V
Assertion
Ref Expression
abexex {𝑦 ∣ ∃𝑥𝜑} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abexex
StepHypRef Expression
1 df-rex 2478 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 abexex.2 . . . . . 6 (𝜑𝑥𝐴)
32pm4.71ri 392 . . . . 5 (𝜑 ↔ (𝑥𝐴𝜑))
43exbii 1616 . . . 4 (∃𝑥𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
51, 4bitr4i 187 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝜑)
65abbii 2309 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝜑}
7 abexex.1 . . 3 𝐴 ∈ V
8 abexex.3 . . 3 {𝑦𝜑} ∈ V
97, 8abrexex2 6176 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
106, 9eqeltrri 2267 1 {𝑦 ∣ ∃𝑥𝜑} ∈ V
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  wcel 2164  {cab 2179  wrex 2473  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator