| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abexex | GIF version | ||
| Description: A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.) |
| Ref | Expression |
|---|---|
| abexex.1 | ⊢ 𝐴 ∈ V |
| abexex.2 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| abexex.3 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
| Ref | Expression |
|---|---|
| abexex | ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2514 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | abexex.2 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 3 | 2 | pm4.71ri 392 | . . . . 5 ⊢ (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | 3 | exbii 1651 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 5 | 1, 4 | bitr4i 187 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥𝜑) |
| 6 | 5 | abbii 2345 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
| 7 | abexex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 8 | abexex.3 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
| 9 | 7, 8 | abrexex2 6267 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| 10 | 6, 9 | eqeltrri 2303 | 1 ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∃wrex 2509 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |