ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abexex GIF version

Theorem abexex 6094
Description: A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
Hypotheses
Ref Expression
abexex.1 𝐴 ∈ V
abexex.2 (𝜑𝑥𝐴)
abexex.3 {𝑦𝜑} ∈ V
Assertion
Ref Expression
abexex {𝑦 ∣ ∃𝑥𝜑} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abexex
StepHypRef Expression
1 df-rex 2450 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 abexex.2 . . . . . 6 (𝜑𝑥𝐴)
32pm4.71ri 390 . . . . 5 (𝜑 ↔ (𝑥𝐴𝜑))
43exbii 1593 . . . 4 (∃𝑥𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
51, 4bitr4i 186 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝜑)
65abbii 2282 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝜑}
7 abexex.1 . . 3 𝐴 ∈ V
8 abexex.3 . . 3 {𝑦𝜑} ∈ V
97, 8abrexex2 6092 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
106, 9eqeltrri 2240 1 {𝑦 ∣ ∃𝑥𝜑} ∈ V
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1480  wcel 2136  {cab 2151  wrex 2445  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator