![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abexssex | GIF version |
Description: Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
abrexex2.1 | ⊢ 𝐴 ∈ V |
abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
Ref | Expression |
---|---|
abexssex | ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2471 | . . . 4 ⊢ (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ 𝜑)) | |
2 | velpw 3594 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
3 | 2 | anbi1i 458 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝜑) ↔ (𝑥 ⊆ 𝐴 ∧ 𝜑)) |
4 | 3 | exbii 1615 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)) |
5 | 1, 4 | bitri 184 | . . 3 ⊢ (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)) |
6 | 5 | abbii 2303 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} = {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} |
7 | abrexex2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
8 | 7 | pwex 4195 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
9 | abrexex2.2 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
10 | 8, 9 | abrexex2 6139 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} ∈ V |
11 | 6, 10 | eqeltrri 2261 | 1 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∃wex 1502 ∈ wcel 2158 {cab 2173 ∃wrex 2466 Vcvv 2749 ⊆ wss 3141 𝒫 cpw 3587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |