![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abexssex | GIF version |
Description: Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
abrexex2.1 | ⊢ 𝐴 ∈ V |
abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
Ref | Expression |
---|---|
abexssex | ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2461 | . . . 4 ⊢ (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ 𝜑)) | |
2 | velpw 3584 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
3 | 2 | anbi1i 458 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝜑) ↔ (𝑥 ⊆ 𝐴 ∧ 𝜑)) |
4 | 3 | exbii 1605 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)) |
5 | 1, 4 | bitri 184 | . . 3 ⊢ (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)) |
6 | 5 | abbii 2293 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} = {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} |
7 | abrexex2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
8 | 7 | pwex 4185 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
9 | abrexex2.2 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
10 | 8, 9 | abrexex2 6127 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} ∈ V |
11 | 6, 10 | eqeltrri 2251 | 1 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∃wex 1492 ∈ wcel 2148 {cab 2163 ∃wrex 2456 Vcvv 2739 ⊆ wss 3131 𝒫 cpw 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |