ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abexssex GIF version

Theorem abexssex 6128
Description: Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.)
Hypotheses
Ref Expression
abrexex2.1 𝐴 ∈ V
abrexex2.2 {𝑦𝜑} ∈ V
Assertion
Ref Expression
abexssex {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abexssex
StepHypRef Expression
1 df-rex 2461 . . . 4 (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴𝜑))
2 velpw 3584 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32anbi1i 458 . . . . 5 ((𝑥 ∈ 𝒫 𝐴𝜑) ↔ (𝑥𝐴𝜑))
43exbii 1605 . . . 4 (∃𝑥(𝑥 ∈ 𝒫 𝐴𝜑) ↔ ∃𝑥(𝑥𝐴𝜑))
51, 4bitri 184 . . 3 (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
65abbii 2293 . 2 {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)}
7 abrexex2.1 . . . 4 𝐴 ∈ V
87pwex 4185 . . 3 𝒫 𝐴 ∈ V
9 abrexex2.2 . . 3 {𝑦𝜑} ∈ V
108, 9abrexex2 6127 . 2 {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} ∈ V
116, 10eqeltrri 2251 1 {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)} ∈ V
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1492  wcel 2148  {cab 2163  wrex 2456  Vcvv 2739  wss 3131  𝒫 cpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator