ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprxx Unicode version

Theorem nqprxx 7613
Description: The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprxx  |-  ( A  e.  Q.  ->  <. { x  |  x  <Q  A } ,  { x  |  A  <Q  x } >.  e.  P. )
Distinct variable group:    x, A

Proof of Theorem nqprxx
Dummy variables  r  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprm 7609 . . 3  |-  ( A  e.  Q.  ->  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )
2 ltrelnq 7432 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4715 . . . . . 6  |-  ( x 
<Q  A  ->  ( x  e.  Q.  /\  A  e.  Q. ) )
43simpld 112 . . . . 5  |-  ( x 
<Q  A  ->  x  e. 
Q. )
54abssi 3258 . . . 4  |-  { x  |  x  <Q  A }  C_ 
Q.
62brel 4715 . . . . . 6  |-  ( A 
<Q  x  ->  ( A  e.  Q.  /\  x  e.  Q. ) )
76simprd 114 . . . . 5  |-  ( A 
<Q  x  ->  x  e. 
Q. )
87abssi 3258 . . . 4  |-  { x  |  A  <Q  x }  C_ 
Q.
95, 8pm3.2i 272 . . 3  |-  ( { x  |  x  <Q  A }  C_  Q.  /\  {
x  |  A  <Q  x }  C_  Q. )
101, 9jctil 312 . 2  |-  ( A  e.  Q.  ->  (
( { x  |  x  <Q  A }  C_ 
Q.  /\  { x  |  A  <Q  x }  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) ) )
11 nqprrnd 7610 . . 3  |-  ( A  e.  Q.  ->  ( A. q  e.  Q.  ( q  e.  {
x  |  x  <Q  A }  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  { x  |  x  <Q  A }
) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) ) )
12 nqprdisj 7611 . . 3  |-  ( A  e.  Q.  ->  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
) )
13 nqprloc 7612 . . 3  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
1411, 12, 133jca 1179 . 2  |-  ( A  e.  Q.  ->  (
( A. q  e. 
Q.  ( q  e. 
{ x  |  x 
<Q  A }  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  { x  |  x  <Q  A } ) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
)  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) ) )
15 elinp 7541 . 2  |-  ( <. { x  |  x  <Q  A } ,  {
x  |  A  <Q  x } >.  e.  P.  <->  ( ( ( { x  |  x  <Q  A }  C_ 
Q.  /\  { x  |  A  <Q  x }  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )  /\  (
( A. q  e. 
Q.  ( q  e. 
{ x  |  x 
<Q  A }  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  { x  |  x  <Q  A } ) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
)  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) ) ) )
1610, 14, 15sylanbrc 417 1  |-  ( A  e.  Q.  ->  <. { x  |  x  <Q  A } ,  { x  |  A  <Q  x } >.  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476    C_ wss 3157   <.cop 3625   class class class wbr 4033   Q.cnq 7347    <Q cltq 7352   P.cnp 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533
This theorem is referenced by:  nqprlu  7614
  Copyright terms: Public domain W3C validator