ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprxx Unicode version

Theorem nqprxx 7630
Description: The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprxx  |-  ( A  e.  Q.  ->  <. { x  |  x  <Q  A } ,  { x  |  A  <Q  x } >.  e.  P. )
Distinct variable group:    x, A

Proof of Theorem nqprxx
Dummy variables  r  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprm 7626 . . 3  |-  ( A  e.  Q.  ->  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )
2 ltrelnq 7449 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4716 . . . . . 6  |-  ( x 
<Q  A  ->  ( x  e.  Q.  /\  A  e.  Q. ) )
43simpld 112 . . . . 5  |-  ( x 
<Q  A  ->  x  e. 
Q. )
54abssi 3259 . . . 4  |-  { x  |  x  <Q  A }  C_ 
Q.
62brel 4716 . . . . . 6  |-  ( A 
<Q  x  ->  ( A  e.  Q.  /\  x  e.  Q. ) )
76simprd 114 . . . . 5  |-  ( A 
<Q  x  ->  x  e. 
Q. )
87abssi 3259 . . . 4  |-  { x  |  A  <Q  x }  C_ 
Q.
95, 8pm3.2i 272 . . 3  |-  ( { x  |  x  <Q  A }  C_  Q.  /\  {
x  |  A  <Q  x }  C_  Q. )
101, 9jctil 312 . 2  |-  ( A  e.  Q.  ->  (
( { x  |  x  <Q  A }  C_ 
Q.  /\  { x  |  A  <Q  x }  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) ) )
11 nqprrnd 7627 . . 3  |-  ( A  e.  Q.  ->  ( A. q  e.  Q.  ( q  e.  {
x  |  x  <Q  A }  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  { x  |  x  <Q  A }
) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) ) )
12 nqprdisj 7628 . . 3  |-  ( A  e.  Q.  ->  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
) )
13 nqprloc 7629 . . 3  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
1411, 12, 133jca 1179 . 2  |-  ( A  e.  Q.  ->  (
( A. q  e. 
Q.  ( q  e. 
{ x  |  x 
<Q  A }  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  { x  |  x  <Q  A } ) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
)  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) ) )
15 elinp 7558 . 2  |-  ( <. { x  |  x  <Q  A } ,  {
x  |  A  <Q  x } >.  e.  P.  <->  ( ( ( { x  |  x  <Q  A }  C_ 
Q.  /\  { x  |  A  <Q  x }  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )  /\  (
( A. q  e. 
Q.  ( q  e. 
{ x  |  x 
<Q  A }  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  { x  |  x  <Q  A } ) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
)  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) ) ) )
1610, 14, 15sylanbrc 417 1  |-  ( A  e.  Q.  ->  <. { x  |  x  <Q  A } ,  { x  |  A  <Q  x } >.  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476    C_ wss 3157   <.cop 3626   class class class wbr 4034   Q.cnq 7364    <Q cltq 7369   P.cnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-inp 7550
This theorem is referenced by:  nqprlu  7631
  Copyright terms: Public domain W3C validator