ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprxx Unicode version

Theorem nqprxx 7322
Description: The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprxx  |-  ( A  e.  Q.  ->  <. { x  |  x  <Q  A } ,  { x  |  A  <Q  x } >.  e.  P. )
Distinct variable group:    x, A

Proof of Theorem nqprxx
Dummy variables  r  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprm 7318 . . 3  |-  ( A  e.  Q.  ->  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )
2 ltrelnq 7141 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4561 . . . . . 6  |-  ( x 
<Q  A  ->  ( x  e.  Q.  /\  A  e.  Q. ) )
43simpld 111 . . . . 5  |-  ( x 
<Q  A  ->  x  e. 
Q. )
54abssi 3142 . . . 4  |-  { x  |  x  <Q  A }  C_ 
Q.
62brel 4561 . . . . . 6  |-  ( A 
<Q  x  ->  ( A  e.  Q.  /\  x  e.  Q. ) )
76simprd 113 . . . . 5  |-  ( A 
<Q  x  ->  x  e. 
Q. )
87abssi 3142 . . . 4  |-  { x  |  A  <Q  x }  C_ 
Q.
95, 8pm3.2i 270 . . 3  |-  ( { x  |  x  <Q  A }  C_  Q.  /\  {
x  |  A  <Q  x }  C_  Q. )
101, 9jctil 310 . 2  |-  ( A  e.  Q.  ->  (
( { x  |  x  <Q  A }  C_ 
Q.  /\  { x  |  A  <Q  x }  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) ) )
11 nqprrnd 7319 . . 3  |-  ( A  e.  Q.  ->  ( A. q  e.  Q.  ( q  e.  {
x  |  x  <Q  A }  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  { x  |  x  <Q  A }
) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) ) )
12 nqprdisj 7320 . . 3  |-  ( A  e.  Q.  ->  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
) )
13 nqprloc 7321 . . 3  |-  ( A  e.  Q.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) )
1411, 12, 133jca 1146 . 2  |-  ( A  e.  Q.  ->  (
( A. q  e. 
Q.  ( q  e. 
{ x  |  x 
<Q  A }  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  { x  |  x  <Q  A } ) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
)  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) ) )
15 elinp 7250 . 2  |-  ( <. { x  |  x  <Q  A } ,  {
x  |  A  <Q  x } >.  e.  P.  <->  ( ( ( { x  |  x  <Q  A }  C_ 
Q.  /\  { x  |  A  <Q  x }  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  { x  |  x  <Q  A }  /\  E. r  e.  Q.  r  e.  { x  |  A  <Q  x }
) )  /\  (
( A. q  e. 
Q.  ( q  e. 
{ x  |  x 
<Q  A }  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  { x  |  x  <Q  A } ) )  /\  A. r  e.  Q.  (
r  e.  { x  |  A  <Q  x }  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  { x  |  A  <Q  x } ) ) )  /\  A. q  e.  Q.  -.  ( q  e.  { x  |  x  <Q  A }  /\  q  e.  { x  |  A  <Q  x }
)  /\  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  { x  |  x 
<Q  A }  \/  r  e.  { x  |  A  <Q  x } ) ) ) ) )
1610, 14, 15sylanbrc 413 1  |-  ( A  e.  Q.  ->  <. { x  |  x  <Q  A } ,  { x  |  A  <Q  x } >.  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 682    /\ w3a 947    e. wcel 1465   {cab 2103   A.wral 2393   E.wrex 2394    C_ wss 3041   <.cop 3500   class class class wbr 3899   Q.cnq 7056    <Q cltq 7061   P.cnp 7067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-inp 7242
This theorem is referenced by:  nqprlu  7323
  Copyright terms: Public domain W3C validator