| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltnqex | Unicode version | ||
| Description: The class of rationals less than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltnqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqex 7506 |
. 2
| |
| 2 | ltrelnq 7508 |
. . . . 5
| |
| 3 | 2 | brel 4740 |
. . . 4
|
| 4 | 3 | simpld 112 |
. . 3
|
| 5 | 4 | abssi 3272 |
. 2
|
| 6 | 1, 5 | ssexi 4193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-qs 6644 df-ni 7447 df-nqqs 7491 df-ltnqqs 7496 |
| This theorem is referenced by: nqprl 7694 nqpru 7695 1prl 7698 1pru 7699 addnqprlemrl 7700 addnqprlemru 7701 addnqprlemfl 7702 addnqprlemfu 7703 mulnqprlemrl 7716 mulnqprlemru 7717 mulnqprlemfl 7718 mulnqprlemfu 7719 ltnqpr 7736 ltnqpri 7737 archpr 7786 cauappcvgprlemladdfu 7797 cauappcvgprlemladdfl 7798 cauappcvgprlem2 7803 caucvgprlemladdfu 7820 caucvgprlem2 7823 caucvgprprlemopu 7842 suplocexprlemloc 7864 |
| Copyright terms: Public domain | W3C validator |