| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltnqex | Unicode version | ||
| Description: The class of rationals less than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltnqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqex 7476 |
. 2
| |
| 2 | ltrelnq 7478 |
. . . . 5
| |
| 3 | 2 | brel 4727 |
. . . 4
|
| 4 | 3 | simpld 112 |
. . 3
|
| 5 | 4 | abssi 3268 |
. 2
|
| 6 | 1, 5 | ssexi 4182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-qs 6626 df-ni 7417 df-nqqs 7461 df-ltnqqs 7466 |
| This theorem is referenced by: nqprl 7664 nqpru 7665 1prl 7668 1pru 7669 addnqprlemrl 7670 addnqprlemru 7671 addnqprlemfl 7672 addnqprlemfu 7673 mulnqprlemrl 7686 mulnqprlemru 7687 mulnqprlemfl 7688 mulnqprlemfu 7689 ltnqpr 7706 ltnqpri 7707 archpr 7756 cauappcvgprlemladdfu 7767 cauappcvgprlemladdfl 7768 cauappcvgprlem2 7773 caucvgprlemladdfu 7790 caucvgprlem2 7793 caucvgprprlemopu 7812 suplocexprlemloc 7834 |
| Copyright terms: Public domain | W3C validator |