ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemell Unicode version

Theorem recexprlemell 7423
Description: Membership in the lower cut of  B. Lemma for recexpr 7439. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemell  |-  ( C  e.  ( 1st `  B
)  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem recexprlemell
StepHypRef Expression
1 elex 2692 . 2  |-  ( C  e.  ( 1st `  B
)  ->  C  e.  _V )
2 ltrelnq 7166 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4586 . . . . . 6  |-  ( C 
<Q  y  ->  ( C  e.  Q.  /\  y  e.  Q. ) )
43simpld 111 . . . . 5  |-  ( C 
<Q  y  ->  C  e. 
Q. )
5 elex 2692 . . . . 5  |-  ( C  e.  Q.  ->  C  e.  _V )
64, 5syl 14 . . . 4  |-  ( C 
<Q  y  ->  C  e. 
_V )
76adantr 274 . . 3  |-  ( ( C  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  C  e.  _V )
87exlimiv 1577 . 2  |-  ( E. y ( C  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  C  e.  _V )
9 breq1 3927 . . . . 5  |-  ( x  =  C  ->  (
x  <Q  y  <->  C  <Q  y ) )
109anbi1d 460 . . . 4  |-  ( x  =  C  ->  (
( x  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( C  <Q  y  /\  ( *Q
`  y )  e.  ( 2nd `  A
) ) ) )
1110exbidv 1797 . . 3  |-  ( x  =  C  ->  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) ) )
12 recexpr.1 . . . . 5  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
1312fveq2i 5417 . . . 4  |-  ( 1st `  B )  =  ( 1st `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )
14 nqex 7164 . . . . . 6  |-  Q.  e.  _V
152brel 4586 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
1615simpld 111 . . . . . . . . 9  |-  ( x 
<Q  y  ->  x  e. 
Q. )
1716adantr 274 . . . . . . . 8  |-  ( ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  x  e.  Q. )
1817exlimiv 1577 . . . . . . 7  |-  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1918abssi 3167 . . . . . 6  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  C_  Q.
2014, 19ssexi 4061 . . . . 5  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  e.  _V
212brel 4586 . . . . . . . . . 10  |-  ( y 
<Q  x  ->  ( y  e.  Q.  /\  x  e.  Q. ) )
2221simprd 113 . . . . . . . . 9  |-  ( y 
<Q  x  ->  x  e. 
Q. )
2322adantr 274 . . . . . . . 8  |-  ( ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  x  e.  Q. )
2423exlimiv 1577 . . . . . . 7  |-  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  x  e.  Q. )
2524abssi 3167 . . . . . 6  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  C_  Q.
2614, 25ssexi 4061 . . . . 5  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  e.  _V
2720, 26op1st 6037 . . . 4  |-  ( 1st `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )  =  { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) }
2813, 27eqtri 2158 . . 3  |-  ( 1st `  B )  =  {
x  |  E. y
( x  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) }
2911, 28elab2g 2826 . 2  |-  ( C  e.  _V  ->  ( C  e.  ( 1st `  B )  <->  E. y
( C  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
301, 8, 29pm5.21nii 693 1  |-  ( C  e.  ( 1st `  B
)  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2123   _Vcvv 2681   <.cop 3525   class class class wbr 3924   ` cfv 5118   1stc1st 6029   2ndc2nd 6030   Q.cnq 7081   *Qcrq 7085    <Q cltq 7086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-1st 6031  df-qs 6428  df-ni 7105  df-nqqs 7149  df-ltnqqs 7154
This theorem is referenced by:  recexprlemm  7425  recexprlemopl  7426  recexprlemlol  7427  recexprlemdisj  7431  recexprlemloc  7432  recexprlem1ssl  7434  recexprlemss1l  7436
  Copyright terms: Public domain W3C validator