ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemell Unicode version

Theorem recexprlemell 7735
Description: Membership in the lower cut of  B. Lemma for recexpr 7751. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemell  |-  ( C  e.  ( 1st `  B
)  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem recexprlemell
StepHypRef Expression
1 elex 2783 . 2  |-  ( C  e.  ( 1st `  B
)  ->  C  e.  _V )
2 ltrelnq 7478 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4727 . . . . . 6  |-  ( C 
<Q  y  ->  ( C  e.  Q.  /\  y  e.  Q. ) )
43simpld 112 . . . . 5  |-  ( C 
<Q  y  ->  C  e. 
Q. )
5 elex 2783 . . . . 5  |-  ( C  e.  Q.  ->  C  e.  _V )
64, 5syl 14 . . . 4  |-  ( C 
<Q  y  ->  C  e. 
_V )
76adantr 276 . . 3  |-  ( ( C  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  C  e.  _V )
87exlimiv 1621 . 2  |-  ( E. y ( C  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  C  e.  _V )
9 breq1 4047 . . . . 5  |-  ( x  =  C  ->  (
x  <Q  y  <->  C  <Q  y ) )
109anbi1d 465 . . . 4  |-  ( x  =  C  ->  (
( x  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( C  <Q  y  /\  ( *Q
`  y )  e.  ( 2nd `  A
) ) ) )
1110exbidv 1848 . . 3  |-  ( x  =  C  ->  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) ) )
12 recexpr.1 . . . . 5  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
1312fveq2i 5579 . . . 4  |-  ( 1st `  B )  =  ( 1st `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )
14 nqex 7476 . . . . . 6  |-  Q.  e.  _V
152brel 4727 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
1615simpld 112 . . . . . . . . 9  |-  ( x 
<Q  y  ->  x  e. 
Q. )
1716adantr 276 . . . . . . . 8  |-  ( ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  x  e.  Q. )
1817exlimiv 1621 . . . . . . 7  |-  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1918abssi 3268 . . . . . 6  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  C_  Q.
2014, 19ssexi 4182 . . . . 5  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  e.  _V
212brel 4727 . . . . . . . . . 10  |-  ( y 
<Q  x  ->  ( y  e.  Q.  /\  x  e.  Q. ) )
2221simprd 114 . . . . . . . . 9  |-  ( y 
<Q  x  ->  x  e. 
Q. )
2322adantr 276 . . . . . . . 8  |-  ( ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  x  e.  Q. )
2423exlimiv 1621 . . . . . . 7  |-  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  x  e.  Q. )
2524abssi 3268 . . . . . 6  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  C_  Q.
2614, 25ssexi 4182 . . . . 5  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  e.  _V
2720, 26op1st 6232 . . . 4  |-  ( 1st `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )  =  { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) }
2813, 27eqtri 2226 . . 3  |-  ( 1st `  B )  =  {
x  |  E. y
( x  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) }
2911, 28elab2g 2920 . 2  |-  ( C  e.  _V  ->  ( C  e.  ( 1st `  B )  <->  E. y
( C  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
301, 8, 29pm5.21nii 706 1  |-  ( C  e.  ( 1st `  B
)  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   _Vcvv 2772   <.cop 3636   class class class wbr 4044   ` cfv 5271   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393   *Qcrq 7397    <Q cltq 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-qs 6626  df-ni 7417  df-nqqs 7461  df-ltnqqs 7466
This theorem is referenced by:  recexprlemm  7737  recexprlemopl  7738  recexprlemlol  7739  recexprlemdisj  7743  recexprlemloc  7744  recexprlem1ssl  7746  recexprlemss1l  7748
  Copyright terms: Public domain W3C validator