ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemell Unicode version

Theorem recexprlemell 7805
Description: Membership in the lower cut of  B. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemell  |-  ( C  e.  ( 1st `  B
)  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem recexprlemell
StepHypRef Expression
1 elex 2811 . 2  |-  ( C  e.  ( 1st `  B
)  ->  C  e.  _V )
2 ltrelnq 7548 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4770 . . . . . 6  |-  ( C 
<Q  y  ->  ( C  e.  Q.  /\  y  e.  Q. ) )
43simpld 112 . . . . 5  |-  ( C 
<Q  y  ->  C  e. 
Q. )
5 elex 2811 . . . . 5  |-  ( C  e.  Q.  ->  C  e.  _V )
64, 5syl 14 . . . 4  |-  ( C 
<Q  y  ->  C  e. 
_V )
76adantr 276 . . 3  |-  ( ( C  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  C  e.  _V )
87exlimiv 1644 . 2  |-  ( E. y ( C  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  C  e.  _V )
9 breq1 4085 . . . . 5  |-  ( x  =  C  ->  (
x  <Q  y  <->  C  <Q  y ) )
109anbi1d 465 . . . 4  |-  ( x  =  C  ->  (
( x  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( C  <Q  y  /\  ( *Q
`  y )  e.  ( 2nd `  A
) ) ) )
1110exbidv 1871 . . 3  |-  ( x  =  C  ->  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) ) )
12 recexpr.1 . . . . 5  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
1312fveq2i 5629 . . . 4  |-  ( 1st `  B )  =  ( 1st `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )
14 nqex 7546 . . . . . 6  |-  Q.  e.  _V
152brel 4770 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
1615simpld 112 . . . . . . . . 9  |-  ( x 
<Q  y  ->  x  e. 
Q. )
1716adantr 276 . . . . . . . 8  |-  ( ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  x  e.  Q. )
1817exlimiv 1644 . . . . . . 7  |-  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1918abssi 3299 . . . . . 6  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  C_  Q.
2014, 19ssexi 4221 . . . . 5  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  e.  _V
212brel 4770 . . . . . . . . . 10  |-  ( y 
<Q  x  ->  ( y  e.  Q.  /\  x  e.  Q. ) )
2221simprd 114 . . . . . . . . 9  |-  ( y 
<Q  x  ->  x  e. 
Q. )
2322adantr 276 . . . . . . . 8  |-  ( ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  x  e.  Q. )
2423exlimiv 1644 . . . . . . 7  |-  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  x  e.  Q. )
2524abssi 3299 . . . . . 6  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  C_  Q.
2614, 25ssexi 4221 . . . . 5  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  e.  _V
2720, 26op1st 6290 . . . 4  |-  ( 1st `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )  =  { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) }
2813, 27eqtri 2250 . . 3  |-  ( 1st `  B )  =  {
x  |  E. y
( x  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) }
2911, 28elab2g 2950 . 2  |-  ( C  e.  _V  ->  ( C  e.  ( 1st `  B )  <->  E. y
( C  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
301, 8, 29pm5.21nii 709 1  |-  ( C  e.  ( 1st `  B
)  <->  E. y ( C 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   _Vcvv 2799   <.cop 3669   class class class wbr 4082   ` cfv 5317   1stc1st 6282   2ndc2nd 6283   Q.cnq 7463   *Qcrq 7467    <Q cltq 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-qs 6684  df-ni 7487  df-nqqs 7531  df-ltnqqs 7536
This theorem is referenced by:  recexprlemm  7807  recexprlemopl  7808  recexprlemlol  7809  recexprlemdisj  7813  recexprlemloc  7814  recexprlem1ssl  7816  recexprlemss1l  7818
  Copyright terms: Public domain W3C validator