ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemelu Unicode version

Theorem recexprlemelu 7564
Description: Membership in the upper cut of  B. Lemma for recexpr 7579. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemelu  |-  ( C  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem recexprlemelu
StepHypRef Expression
1 elex 2737 . 2  |-  ( C  e.  ( 2nd `  B
)  ->  C  e.  _V )
2 ltrelnq 7306 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4656 . . . . . 6  |-  ( y 
<Q  C  ->  ( y  e.  Q.  /\  C  e.  Q. ) )
43simprd 113 . . . . 5  |-  ( y 
<Q  C  ->  C  e. 
Q. )
5 elex 2737 . . . . 5  |-  ( C  e.  Q.  ->  C  e.  _V )
64, 5syl 14 . . . 4  |-  ( y 
<Q  C  ->  C  e. 
_V )
76adantr 274 . . 3  |-  ( ( y  <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  C  e.  _V )
87exlimiv 1586 . 2  |-  ( E. y ( y  <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  C  e.  _V )
9 breq2 3986 . . . . 5  |-  ( x  =  C  ->  (
y  <Q  x  <->  y  <Q  C ) )
109anbi1d 461 . . . 4  |-  ( x  =  C  ->  (
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( y  <Q  C  /\  ( *Q
`  y )  e.  ( 1st `  A
) ) ) )
1110exbidv 1813 . . 3  |-  ( x  =  C  ->  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  <->  E. y ( y 
<Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
12 recexpr.1 . . . . 5  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
1312fveq2i 5489 . . . 4  |-  ( 2nd `  B )  =  ( 2nd `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )
14 nqex 7304 . . . . . 6  |-  Q.  e.  _V
152brel 4656 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
1615simpld 111 . . . . . . . . 9  |-  ( x 
<Q  y  ->  x  e. 
Q. )
1716adantr 274 . . . . . . . 8  |-  ( ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  x  e.  Q. )
1817exlimiv 1586 . . . . . . 7  |-  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1918abssi 3217 . . . . . 6  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  C_  Q.
2014, 19ssexi 4120 . . . . 5  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  e.  _V
212brel 4656 . . . . . . . . . 10  |-  ( y 
<Q  x  ->  ( y  e.  Q.  /\  x  e.  Q. ) )
2221simprd 113 . . . . . . . . 9  |-  ( y 
<Q  x  ->  x  e. 
Q. )
2322adantr 274 . . . . . . . 8  |-  ( ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  x  e.  Q. )
2423exlimiv 1586 . . . . . . 7  |-  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  x  e.  Q. )
2524abssi 3217 . . . . . 6  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  C_  Q.
2614, 25ssexi 4120 . . . . 5  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  e.  _V
2720, 26op2nd 6115 . . . 4  |-  ( 2nd `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )  =  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) }
2813, 27eqtri 2186 . . 3  |-  ( 2nd `  B )  =  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
2911, 28elab2g 2873 . 2  |-  ( C  e.  _V  ->  ( C  e.  ( 2nd `  B )  <->  E. y
( y  <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
301, 8, 29pm5.21nii 694 1  |-  ( C  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   _Vcvv 2726   <.cop 3579   class class class wbr 3982   ` cfv 5188   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221   *Qcrq 7225    <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-2nd 6109  df-qs 6507  df-ni 7245  df-nqqs 7289  df-ltnqqs 7294
This theorem is referenced by:  recexprlemm  7565  recexprlemopu  7568  recexprlemupu  7569  recexprlemdisj  7571  recexprlemloc  7572  recexprlem1ssu  7575  recexprlemss1u  7577
  Copyright terms: Public domain W3C validator