ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemelu Unicode version

Theorem recexprlemelu 7683
Description: Membership in the upper cut of  B. Lemma for recexpr 7698. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemelu  |-  ( C  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem recexprlemelu
StepHypRef Expression
1 elex 2771 . 2  |-  ( C  e.  ( 2nd `  B
)  ->  C  e.  _V )
2 ltrelnq 7425 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4711 . . . . . 6  |-  ( y 
<Q  C  ->  ( y  e.  Q.  /\  C  e.  Q. ) )
43simprd 114 . . . . 5  |-  ( y 
<Q  C  ->  C  e. 
Q. )
5 elex 2771 . . . . 5  |-  ( C  e.  Q.  ->  C  e.  _V )
64, 5syl 14 . . . 4  |-  ( y 
<Q  C  ->  C  e. 
_V )
76adantr 276 . . 3  |-  ( ( y  <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  C  e.  _V )
87exlimiv 1609 . 2  |-  ( E. y ( y  <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  C  e.  _V )
9 breq2 4033 . . . . 5  |-  ( x  =  C  ->  (
y  <Q  x  <->  y  <Q  C ) )
109anbi1d 465 . . . 4  |-  ( x  =  C  ->  (
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( y  <Q  C  /\  ( *Q
`  y )  e.  ( 1st `  A
) ) ) )
1110exbidv 1836 . . 3  |-  ( x  =  C  ->  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  <->  E. y ( y 
<Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
12 recexpr.1 . . . . 5  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
1312fveq2i 5557 . . . 4  |-  ( 2nd `  B )  =  ( 2nd `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )
14 nqex 7423 . . . . . 6  |-  Q.  e.  _V
152brel 4711 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
1615simpld 112 . . . . . . . . 9  |-  ( x 
<Q  y  ->  x  e. 
Q. )
1716adantr 276 . . . . . . . 8  |-  ( ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  x  e.  Q. )
1817exlimiv 1609 . . . . . . 7  |-  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1918abssi 3254 . . . . . 6  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  C_  Q.
2014, 19ssexi 4167 . . . . 5  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  e.  _V
212brel 4711 . . . . . . . . . 10  |-  ( y 
<Q  x  ->  ( y  e.  Q.  /\  x  e.  Q. ) )
2221simprd 114 . . . . . . . . 9  |-  ( y 
<Q  x  ->  x  e. 
Q. )
2322adantr 276 . . . . . . . 8  |-  ( ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  x  e.  Q. )
2423exlimiv 1609 . . . . . . 7  |-  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  x  e.  Q. )
2524abssi 3254 . . . . . 6  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  C_  Q.
2614, 25ssexi 4167 . . . . 5  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  e.  _V
2720, 26op2nd 6200 . . . 4  |-  ( 2nd `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )  =  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) }
2813, 27eqtri 2214 . . 3  |-  ( 2nd `  B )  =  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
2911, 28elab2g 2907 . 2  |-  ( C  e.  _V  ->  ( C  e.  ( 2nd `  B )  <->  E. y
( y  <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
301, 8, 29pm5.21nii 705 1  |-  ( C  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   _Vcvv 2760   <.cop 3621   class class class wbr 4029   ` cfv 5254   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340   *Qcrq 7344    <Q cltq 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-2nd 6194  df-qs 6593  df-ni 7364  df-nqqs 7408  df-ltnqqs 7413
This theorem is referenced by:  recexprlemm  7684  recexprlemopu  7687  recexprlemupu  7688  recexprlemdisj  7690  recexprlemloc  7691  recexprlem1ssu  7694  recexprlemss1u  7696
  Copyright terms: Public domain W3C validator