Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recexprlemelu | Unicode version |
Description: Membership in the upper cut of . Lemma for recexpr 7537. (Contributed by Jim Kingdon, 27-Dec-2019.) |
Ref | Expression |
---|---|
recexpr.1 |
Ref | Expression |
---|---|
recexprlemelu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2720 | . 2 | |
2 | ltrelnq 7264 | . . . . . . 7 | |
3 | 2 | brel 4631 | . . . . . 6 |
4 | 3 | simprd 113 | . . . . 5 |
5 | elex 2720 | . . . . 5 | |
6 | 4, 5 | syl 14 | . . . 4 |
7 | 6 | adantr 274 | . . 3 |
8 | 7 | exlimiv 1575 | . 2 |
9 | breq2 3965 | . . . . 5 | |
10 | 9 | anbi1d 461 | . . . 4 |
11 | 10 | exbidv 1802 | . . 3 |
12 | recexpr.1 | . . . . 5 | |
13 | 12 | fveq2i 5464 | . . . 4 |
14 | nqex 7262 | . . . . . 6 | |
15 | 2 | brel 4631 | . . . . . . . . . 10 |
16 | 15 | simpld 111 | . . . . . . . . 9 |
17 | 16 | adantr 274 | . . . . . . . 8 |
18 | 17 | exlimiv 1575 | . . . . . . 7 |
19 | 18 | abssi 3199 | . . . . . 6 |
20 | 14, 19 | ssexi 4098 | . . . . 5 |
21 | 2 | brel 4631 | . . . . . . . . . 10 |
22 | 21 | simprd 113 | . . . . . . . . 9 |
23 | 22 | adantr 274 | . . . . . . . 8 |
24 | 23 | exlimiv 1575 | . . . . . . 7 |
25 | 24 | abssi 3199 | . . . . . 6 |
26 | 14, 25 | ssexi 4098 | . . . . 5 |
27 | 20, 26 | op2nd 6085 | . . . 4 |
28 | 13, 27 | eqtri 2175 | . . 3 |
29 | 11, 28 | elab2g 2855 | . 2 |
30 | 1, 8, 29 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1332 wex 1469 wcel 2125 cab 2140 cvv 2709 cop 3559 class class class wbr 3961 cfv 5163 c1st 6076 c2nd 6077 cnq 7179 crq 7183 cltq 7184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-2nd 6079 df-qs 6475 df-ni 7203 df-nqqs 7247 df-ltnqqs 7252 |
This theorem is referenced by: recexprlemm 7523 recexprlemopu 7526 recexprlemupu 7527 recexprlemdisj 7529 recexprlemloc 7530 recexprlem1ssu 7533 recexprlemss1u 7535 |
Copyright terms: Public domain | W3C validator |