ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemelu Unicode version

Theorem recexprlemelu 7690
Description: Membership in the upper cut of  B. Lemma for recexpr 7705. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemelu  |-  ( C  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem recexprlemelu
StepHypRef Expression
1 elex 2774 . 2  |-  ( C  e.  ( 2nd `  B
)  ->  C  e.  _V )
2 ltrelnq 7432 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4715 . . . . . 6  |-  ( y 
<Q  C  ->  ( y  e.  Q.  /\  C  e.  Q. ) )
43simprd 114 . . . . 5  |-  ( y 
<Q  C  ->  C  e. 
Q. )
5 elex 2774 . . . . 5  |-  ( C  e.  Q.  ->  C  e.  _V )
64, 5syl 14 . . . 4  |-  ( y 
<Q  C  ->  C  e. 
_V )
76adantr 276 . . 3  |-  ( ( y  <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  C  e.  _V )
87exlimiv 1612 . 2  |-  ( E. y ( y  <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  C  e.  _V )
9 breq2 4037 . . . . 5  |-  ( x  =  C  ->  (
y  <Q  x  <->  y  <Q  C ) )
109anbi1d 465 . . . 4  |-  ( x  =  C  ->  (
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( y  <Q  C  /\  ( *Q
`  y )  e.  ( 1st `  A
) ) ) )
1110exbidv 1839 . . 3  |-  ( x  =  C  ->  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  <->  E. y ( y 
<Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
12 recexpr.1 . . . . 5  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
1312fveq2i 5561 . . . 4  |-  ( 2nd `  B )  =  ( 2nd `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )
14 nqex 7430 . . . . . 6  |-  Q.  e.  _V
152brel 4715 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
1615simpld 112 . . . . . . . . 9  |-  ( x 
<Q  y  ->  x  e. 
Q. )
1716adantr 276 . . . . . . . 8  |-  ( ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  x  e.  Q. )
1817exlimiv 1612 . . . . . . 7  |-  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1918abssi 3258 . . . . . 6  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  C_  Q.
2014, 19ssexi 4171 . . . . 5  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  e.  _V
212brel 4715 . . . . . . . . . 10  |-  ( y 
<Q  x  ->  ( y  e.  Q.  /\  x  e.  Q. ) )
2221simprd 114 . . . . . . . . 9  |-  ( y 
<Q  x  ->  x  e. 
Q. )
2322adantr 276 . . . . . . . 8  |-  ( ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  x  e.  Q. )
2423exlimiv 1612 . . . . . . 7  |-  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  x  e.  Q. )
2524abssi 3258 . . . . . 6  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  C_  Q.
2614, 25ssexi 4171 . . . . 5  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  e.  _V
2720, 26op2nd 6205 . . . 4  |-  ( 2nd `  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >. )  =  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) }
2813, 27eqtri 2217 . . 3  |-  ( 2nd `  B )  =  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
2911, 28elab2g 2911 . 2  |-  ( C  e.  _V  ->  ( C  e.  ( 2nd `  B )  <->  E. y
( y  <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) ) )
301, 8, 29pm5.21nii 705 1  |-  ( C  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  C  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   _Vcvv 2763   <.cop 3625   class class class wbr 4033   ` cfv 5258   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347   *Qcrq 7351    <Q cltq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-2nd 6199  df-qs 6598  df-ni 7371  df-nqqs 7415  df-ltnqqs 7420
This theorem is referenced by:  recexprlemm  7691  recexprlemopu  7694  recexprlemupu  7695  recexprlemdisj  7697  recexprlemloc  7698  recexprlem1ssu  7701  recexprlemss1u  7703
  Copyright terms: Public domain W3C validator