![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gtnqex | Unicode version |
Description: The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
Ref | Expression |
---|---|
gtnqex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqex 7113 |
. 2
![]() ![]() ![]() ![]() | |
2 | ltrelnq 7115 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | brel 4549 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | simprd 113 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | abssi 3136 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | ssexi 4024 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-iinf 4460 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-qs 6387 df-ni 7054 df-nqqs 7098 df-ltnqqs 7103 |
This theorem is referenced by: nqprl 7301 nqpru 7302 1prl 7305 1pru 7306 addnqprlemrl 7307 addnqprlemru 7308 addnqprlemfl 7309 addnqprlemfu 7310 mulnqprlemrl 7323 mulnqprlemru 7324 mulnqprlemfl 7325 mulnqprlemfu 7326 ltnqpr 7343 ltnqpri 7344 archpr 7393 cauappcvgprlemladdfu 7404 cauappcvgprlemladdfl 7405 cauappcvgprlem2 7410 caucvgprlemladdfu 7427 caucvgprlem2 7430 caucvgprprlemopu 7449 |
Copyright terms: Public domain | W3C validator |