Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gtnqex | Unicode version |
Description: The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
Ref | Expression |
---|---|
gtnqex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqex 7266 | . 2 | |
2 | ltrelnq 7268 | . . . . 5 | |
3 | 2 | brel 4635 | . . . 4 |
4 | 3 | simprd 113 | . . 3 |
5 | 4 | abssi 3203 | . 2 |
6 | 1, 5 | ssexi 4102 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 cab 2143 cvv 2712 class class class wbr 3965 cnq 7183 cltq 7188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-qs 6479 df-ni 7207 df-nqqs 7251 df-ltnqqs 7256 |
This theorem is referenced by: nqprl 7454 nqpru 7455 1prl 7458 1pru 7459 addnqprlemrl 7460 addnqprlemru 7461 addnqprlemfl 7462 addnqprlemfu 7463 mulnqprlemrl 7476 mulnqprlemru 7477 mulnqprlemfl 7478 mulnqprlemfu 7479 ltnqpr 7496 ltnqpri 7497 archpr 7546 cauappcvgprlemladdfu 7557 cauappcvgprlemladdfl 7558 cauappcvgprlem2 7563 caucvgprlemladdfu 7580 caucvgprlem2 7583 caucvgprprlemopu 7602 suplocexprlemloc 7624 |
Copyright terms: Public domain | W3C validator |