| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divalglemnqt | Unicode version | ||
| Description: Lemma for divalg 12350. The |
| Ref | Expression |
|---|---|
| divalglemnqt.d |
|
| divalglemnqt.r |
|
| divalglemnqt.s |
|
| divalglemnqt.q |
|
| divalglemnqt.t |
|
| divalglemnqt.0s |
|
| divalglemnqt.rd |
|
| divalglemnqt.eq |
|
| Ref | Expression |
|---|---|
| divalglemnqt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglemnqt.rd |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | divalglemnqt.d |
. . . . 5
| |
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | 4 | nnred 9084 |
. . 3
|
| 6 | divalglemnqt.r |
. . . . 5
| |
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | 7 | zred 9530 |
. . 3
|
| 9 | divalglemnqt.s |
. . . . . . 7
| |
| 10 | 9 | adantr 276 |
. . . . . 6
|
| 11 | 10 | zred 9530 |
. . . . 5
|
| 12 | 5, 11 | readdcld 8137 |
. . . 4
|
| 13 | divalglemnqt.0s |
. . . . . 6
| |
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | 5, 11 | addge01d 8641 |
. . . . 5
|
| 16 | 14, 15 | mpbid 147 |
. . . 4
|
| 17 | divalglemnqt.q |
. . . . . . . . . . 11
| |
| 18 | 17 | adantr 276 |
. . . . . . . . . 10
|
| 19 | 18 | zred 9530 |
. . . . . . . . 9
|
| 20 | 19 | recnd 8136 |
. . . . . . . 8
|
| 21 | 5 | recnd 8136 |
. . . . . . . 8
|
| 22 | 20, 21 | mulcld 8128 |
. . . . . . 7
|
| 23 | 11 | recnd 8136 |
. . . . . . 7
|
| 24 | 22, 21, 23 | addassd 8130 |
. . . . . 6
|
| 25 | 19, 5 | remulcld 8138 |
. . . . . . . . 9
|
| 26 | 25, 5 | readdcld 8137 |
. . . . . . . 8
|
| 27 | divalglemnqt.t |
. . . . . . . . . . 11
| |
| 28 | 27 | adantr 276 |
. . . . . . . . . 10
|
| 29 | 28 | zred 9530 |
. . . . . . . . 9
|
| 30 | 29, 5 | remulcld 8138 |
. . . . . . . 8
|
| 31 | 20, 21 | adddirp1d 8134 |
. . . . . . . . 9
|
| 32 | peano2re 8243 |
. . . . . . . . . . 11
| |
| 33 | 19, 32 | syl 14 |
. . . . . . . . . 10
|
| 34 | 4 | nnnn0d 9383 |
. . . . . . . . . . 11
|
| 35 | 34 | nn0ge0d 9386 |
. . . . . . . . . 10
|
| 36 | simpr 110 |
. . . . . . . . . . 11
| |
| 37 | zltp1le 9462 |
. . . . . . . . . . . 12
| |
| 38 | 17, 28, 37 | syl2an2r 595 |
. . . . . . . . . . 11
|
| 39 | 36, 38 | mpbid 147 |
. . . . . . . . . 10
|
| 40 | 33, 29, 5, 35, 39 | lemul1ad 9047 |
. . . . . . . . 9
|
| 41 | 31, 40 | eqbrtrrd 4083 |
. . . . . . . 8
|
| 42 | 26, 30, 11, 41 | leadd1dd 8667 |
. . . . . . 7
|
| 43 | divalglemnqt.eq |
. . . . . . . 8
| |
| 44 | 43 | adantr 276 |
. . . . . . 7
|
| 45 | 42, 44 | breqtrrd 4087 |
. . . . . 6
|
| 46 | 24, 45 | eqbrtrrd 4083 |
. . . . 5
|
| 47 | 12, 8, 25 | leadd2d 8648 |
. . . . 5
|
| 48 | 46, 47 | mpbird 167 |
. . . 4
|
| 49 | 5, 12, 8, 16, 48 | letrd 8231 |
. . 3
|
| 50 | 5, 8, 49 | lensymd 8229 |
. 2
|
| 51 | 2, 50 | pm2.65da 663 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: divalglemeunn 12347 divalglemeuneg 12349 |
| Copyright terms: Public domain | W3C validator |