ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemnqt Unicode version

Theorem divalglemnqt 11261
Description: Lemma for divalg 11265. The  Q  <  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
Hypotheses
Ref Expression
divalglemnqt.d  |-  ( ph  ->  D  e.  NN )
divalglemnqt.r  |-  ( ph  ->  R  e.  ZZ )
divalglemnqt.s  |-  ( ph  ->  S  e.  ZZ )
divalglemnqt.q  |-  ( ph  ->  Q  e.  ZZ )
divalglemnqt.t  |-  ( ph  ->  T  e.  ZZ )
divalglemnqt.0s  |-  ( ph  ->  0  <_  S )
divalglemnqt.rd  |-  ( ph  ->  R  <  D )
divalglemnqt.eq  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
Assertion
Ref Expression
divalglemnqt  |-  ( ph  ->  -.  Q  <  T
)

Proof of Theorem divalglemnqt
StepHypRef Expression
1 divalglemnqt.rd . . 3  |-  ( ph  ->  R  <  D )
21adantr 271 . 2  |-  ( (
ph  /\  Q  <  T )  ->  R  <  D )
3 divalglemnqt.d . . . . 5  |-  ( ph  ->  D  e.  NN )
43adantr 271 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  NN )
54nnred 8498 . . 3  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  RR )
6 divalglemnqt.r . . . . 5  |-  ( ph  ->  R  e.  ZZ )
76adantr 271 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  R  e.  ZZ )
87zred 8931 . . 3  |-  ( (
ph  /\  Q  <  T )  ->  R  e.  RR )
9 divalglemnqt.s . . . . . . 7  |-  ( ph  ->  S  e.  ZZ )
109adantr 271 . . . . . 6  |-  ( (
ph  /\  Q  <  T )  ->  S  e.  ZZ )
1110zred 8931 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  S  e.  RR )
125, 11readdcld 7580 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  ( D  +  S )  e.  RR )
13 divalglemnqt.0s . . . . . 6  |-  ( ph  ->  0  <_  S )
1413adantr 271 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  0  <_  S )
155, 11addge01d 8073 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  ( 0  <_  S  <->  D  <_  ( D  +  S ) ) )
1614, 15mpbid 146 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  D  <_  ( D  +  S ) )
17 divalglemnqt.q . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  ZZ )
1817adantr 271 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  Q  e.  ZZ )
1918zred 8931 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  Q  e.  RR )
2019recnd 7579 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  Q  e.  CC )
215recnd 7579 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  CC )
2220, 21mulcld 7571 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  x.  D )  e.  CC )
2311recnd 7579 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  S  e.  CC )
2422, 21, 23addassd 7573 . . . . . 6  |-  ( (
ph  /\  Q  <  T )  ->  ( (
( Q  x.  D
)  +  D )  +  S )  =  ( ( Q  x.  D )  +  ( D  +  S ) ) )
2519, 5remulcld 7581 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  x.  D )  e.  RR )
2625, 5readdcld 7580 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  D )  e.  RR )
27 divalglemnqt.t . . . . . . . . . . 11  |-  ( ph  ->  T  e.  ZZ )
2827adantr 271 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  T  e.  ZZ )
2928zred 8931 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  T  e.  RR )
3029, 5remulcld 7581 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  ( T  x.  D )  e.  RR )
3120, 21adddirp1d 7577 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  +  1 )  x.  D )  =  ( ( Q  x.  D )  +  D
) )
32 peano2re 7681 . . . . . . . . . . 11  |-  ( Q  e.  RR  ->  ( Q  +  1 )  e.  RR )
3319, 32syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  +  1 )  e.  RR )
344nnnn0d 8789 . . . . . . . . . . 11  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  NN0 )
3534nn0ge0d 8792 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  0  <_  D )
36 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  Q  <  T )  ->  Q  <  T )
37 zltp1le 8867 . . . . . . . . . . . 12  |-  ( ( Q  e.  ZZ  /\  T  e.  ZZ )  ->  ( Q  <  T  <->  ( Q  +  1 )  <_  T ) )
3817, 28, 37syl2an2r 563 . . . . . . . . . . 11  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  <  T  <->  ( Q  + 
1 )  <_  T
) )
3936, 38mpbid 146 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  +  1 )  <_  T )
4033, 29, 5, 35, 39lemul1ad 8463 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  +  1 )  x.  D )  <_ 
( T  x.  D
) )
4131, 40eqbrtrrd 3875 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  D )  <_  ( T  x.  D )
)
4226, 30, 11, 41leadd1dd 8099 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  ( (
( Q  x.  D
)  +  D )  +  S )  <_ 
( ( T  x.  D )  +  S
) )
43 divalglemnqt.eq . . . . . . . 8  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
4443adantr 271 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  R )  =  ( ( T  x.  D
)  +  S ) )
4542, 44breqtrrd 3879 . . . . . 6  |-  ( (
ph  /\  Q  <  T )  ->  ( (
( Q  x.  D
)  +  D )  +  S )  <_ 
( ( Q  x.  D )  +  R
) )
4624, 45eqbrtrrd 3875 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  ( D  +  S ) )  <_ 
( ( Q  x.  D )  +  R
) )
4712, 8, 25leadd2d 8080 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  ( ( D  +  S )  <_  R  <->  ( ( Q  x.  D )  +  ( D  +  S
) )  <_  (
( Q  x.  D
)  +  R ) ) )
4846, 47mpbird 166 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  ( D  +  S )  <_  R
)
495, 12, 8, 16, 48letrd 7670 . . 3  |-  ( (
ph  /\  Q  <  T )  ->  D  <_  R )
505, 8, 49lensymd 7668 . 2  |-  ( (
ph  /\  Q  <  T )  ->  -.  R  <  D )
512, 50pm2.65da 623 1  |-  ( ph  ->  -.  Q  <  T
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1290    e. wcel 1439   class class class wbr 3853  (class class class)co 5668   RRcr 7412   0cc0 7413   1c1 7414    + caddc 7416    x. cmul 7418    < clt 7585    <_ cle 7586   NNcn 8485   ZZcz 8813
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-mulrcl 7507  ax-addcom 7508  ax-mulcom 7509  ax-addass 7510  ax-mulass 7511  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-1rid 7515  ax-0id 7516  ax-rnegex 7517  ax-precex 7518  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-apti 7523  ax-pre-ltadd 7524  ax-pre-mulgt0 7525  ax-pre-mulext 7526
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-br 3854  df-opab 3908  df-id 4131  df-po 4134  df-iso 4135  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-iota 4995  df-fun 5032  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-reap 8115  df-ap 8122  df-inn 8486  df-n0 8737  df-z 8814
This theorem is referenced by:  divalglemeunn  11262  divalglemeuneg  11264
  Copyright terms: Public domain W3C validator