ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemnqt Unicode version

Theorem divalglemnqt 11653
Description: Lemma for divalg 11657. The  Q  <  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
Hypotheses
Ref Expression
divalglemnqt.d  |-  ( ph  ->  D  e.  NN )
divalglemnqt.r  |-  ( ph  ->  R  e.  ZZ )
divalglemnqt.s  |-  ( ph  ->  S  e.  ZZ )
divalglemnqt.q  |-  ( ph  ->  Q  e.  ZZ )
divalglemnqt.t  |-  ( ph  ->  T  e.  ZZ )
divalglemnqt.0s  |-  ( ph  ->  0  <_  S )
divalglemnqt.rd  |-  ( ph  ->  R  <  D )
divalglemnqt.eq  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
Assertion
Ref Expression
divalglemnqt  |-  ( ph  ->  -.  Q  <  T
)

Proof of Theorem divalglemnqt
StepHypRef Expression
1 divalglemnqt.rd . . 3  |-  ( ph  ->  R  <  D )
21adantr 274 . 2  |-  ( (
ph  /\  Q  <  T )  ->  R  <  D )
3 divalglemnqt.d . . . . 5  |-  ( ph  ->  D  e.  NN )
43adantr 274 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  NN )
54nnred 8757 . . 3  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  RR )
6 divalglemnqt.r . . . . 5  |-  ( ph  ->  R  e.  ZZ )
76adantr 274 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  R  e.  ZZ )
87zred 9197 . . 3  |-  ( (
ph  /\  Q  <  T )  ->  R  e.  RR )
9 divalglemnqt.s . . . . . . 7  |-  ( ph  ->  S  e.  ZZ )
109adantr 274 . . . . . 6  |-  ( (
ph  /\  Q  <  T )  ->  S  e.  ZZ )
1110zred 9197 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  S  e.  RR )
125, 11readdcld 7819 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  ( D  +  S )  e.  RR )
13 divalglemnqt.0s . . . . . 6  |-  ( ph  ->  0  <_  S )
1413adantr 274 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  0  <_  S )
155, 11addge01d 8319 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  ( 0  <_  S  <->  D  <_  ( D  +  S ) ) )
1614, 15mpbid 146 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  D  <_  ( D  +  S ) )
17 divalglemnqt.q . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  ZZ )
1817adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  Q  e.  ZZ )
1918zred 9197 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  Q  e.  RR )
2019recnd 7818 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  Q  e.  CC )
215recnd 7818 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  CC )
2220, 21mulcld 7810 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  x.  D )  e.  CC )
2311recnd 7818 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  S  e.  CC )
2422, 21, 23addassd 7812 . . . . . 6  |-  ( (
ph  /\  Q  <  T )  ->  ( (
( Q  x.  D
)  +  D )  +  S )  =  ( ( Q  x.  D )  +  ( D  +  S ) ) )
2519, 5remulcld 7820 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  x.  D )  e.  RR )
2625, 5readdcld 7819 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  D )  e.  RR )
27 divalglemnqt.t . . . . . . . . . . 11  |-  ( ph  ->  T  e.  ZZ )
2827adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  T  e.  ZZ )
2928zred 9197 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  T  e.  RR )
3029, 5remulcld 7820 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  ( T  x.  D )  e.  RR )
3120, 21adddirp1d 7816 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  +  1 )  x.  D )  =  ( ( Q  x.  D )  +  D
) )
32 peano2re 7922 . . . . . . . . . . 11  |-  ( Q  e.  RR  ->  ( Q  +  1 )  e.  RR )
3319, 32syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  +  1 )  e.  RR )
344nnnn0d 9054 . . . . . . . . . . 11  |-  ( (
ph  /\  Q  <  T )  ->  D  e.  NN0 )
3534nn0ge0d 9057 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  0  <_  D )
36 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  Q  <  T )  ->  Q  <  T )
37 zltp1le 9132 . . . . . . . . . . . 12  |-  ( ( Q  e.  ZZ  /\  T  e.  ZZ )  ->  ( Q  <  T  <->  ( Q  +  1 )  <_  T ) )
3817, 28, 37syl2an2r 585 . . . . . . . . . . 11  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  <  T  <->  ( Q  + 
1 )  <_  T
) )
3936, 38mpbid 146 . . . . . . . . . 10  |-  ( (
ph  /\  Q  <  T )  ->  ( Q  +  1 )  <_  T )
4033, 29, 5, 35, 39lemul1ad 8721 . . . . . . . . 9  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  +  1 )  x.  D )  <_ 
( T  x.  D
) )
4131, 40eqbrtrrd 3960 . . . . . . . 8  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  D )  <_  ( T  x.  D )
)
4226, 30, 11, 41leadd1dd 8345 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  ( (
( Q  x.  D
)  +  D )  +  S )  <_ 
( ( T  x.  D )  +  S
) )
43 divalglemnqt.eq . . . . . . . 8  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
4443adantr 274 . . . . . . 7  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  R )  =  ( ( T  x.  D
)  +  S ) )
4542, 44breqtrrd 3964 . . . . . 6  |-  ( (
ph  /\  Q  <  T )  ->  ( (
( Q  x.  D
)  +  D )  +  S )  <_ 
( ( Q  x.  D )  +  R
) )
4624, 45eqbrtrrd 3960 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  ( ( Q  x.  D )  +  ( D  +  S ) )  <_ 
( ( Q  x.  D )  +  R
) )
4712, 8, 25leadd2d 8326 . . . . 5  |-  ( (
ph  /\  Q  <  T )  ->  ( ( D  +  S )  <_  R  <->  ( ( Q  x.  D )  +  ( D  +  S
) )  <_  (
( Q  x.  D
)  +  R ) ) )
4846, 47mpbird 166 . . . 4  |-  ( (
ph  /\  Q  <  T )  ->  ( D  +  S )  <_  R
)
495, 12, 8, 16, 48letrd 7910 . . 3  |-  ( (
ph  /\  Q  <  T )  ->  D  <_  R )
505, 8, 49lensymd 7908 . 2  |-  ( (
ph  /\  Q  <  T )  ->  -.  R  <  D )
512, 50pm2.65da 651 1  |-  ( ph  ->  -.  Q  <  T
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825   NNcn 8744   ZZcz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-inn 8745  df-n0 9002  df-z 9079
This theorem is referenced by:  divalglemeunn  11654  divalglemeuneg  11656
  Copyright terms: Public domain W3C validator