ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldmulg Unicode version

Theorem cnfldmulg 14075
Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
cnfldmulg  |-  ( ( A  e.  ZZ  /\  B  e.  CC )  ->  ( A (.g ` fld ) B )  =  ( A  x.  B
) )

Proof of Theorem cnfldmulg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5926 . . . 4  |-  ( x  =  0  ->  (
x (.g ` fld ) B )  =  ( 0 (.g ` fld ) B ) )
2 oveq1 5926 . . . 4  |-  ( x  =  0  ->  (
x  x.  B )  =  ( 0  x.  B ) )
31, 2eqeq12d 2208 . . 3  |-  ( x  =  0  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( 0 (.g ` fld ) B )  =  ( 0  x.  B ) ) )
4 oveq1 5926 . . . 4  |-  ( x  =  y  ->  (
x (.g ` fld ) B )  =  ( y (.g ` fld ) B ) )
5 oveq1 5926 . . . 4  |-  ( x  =  y  ->  (
x  x.  B )  =  ( y  x.  B ) )
64, 5eqeq12d 2208 . . 3  |-  ( x  =  y  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( y (.g ` fld ) B )  =  ( y  x.  B ) ) )
7 oveq1 5926 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x (.g ` fld ) B )  =  ( ( y  +  1 ) (.g ` fld ) B ) )
8 oveq1 5926 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x  x.  B )  =  ( ( y  +  1 )  x.  B ) )
97, 8eqeq12d 2208 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B ) ) )
10 oveq1 5926 . . . 4  |-  ( x  =  -u y  ->  (
x (.g ` fld ) B )  =  ( -u y (.g ` fld ) B ) )
11 oveq1 5926 . . . 4  |-  ( x  =  -u y  ->  (
x  x.  B )  =  ( -u y  x.  B ) )
1210, 11eqeq12d 2208 . . 3  |-  ( x  =  -u y  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B ) ) )
13 oveq1 5926 . . . 4  |-  ( x  =  A  ->  (
x (.g ` fld ) B )  =  ( A (.g ` fld ) B ) )
14 oveq1 5926 . . . 4  |-  ( x  =  A  ->  (
x  x.  B )  =  ( A  x.  B ) )
1513, 14eqeq12d 2208 . . 3  |-  ( x  =  A  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( A (.g ` fld ) B )  =  ( A  x.  B ) ) )
16 cnfldbas 14059 . . . . 5  |-  CC  =  ( Base ` fld )
17 cnfld0 14070 . . . . 5  |-  0  =  ( 0g ` fld )
18 eqid 2193 . . . . 5  |-  (.g ` fld )  =  (.g ` fld )
1916, 17, 18mulg0 13198 . . . 4  |-  ( B  e.  CC  ->  (
0 (.g ` fld ) B )  =  0 )
20 mul02 8408 . . . 4  |-  ( B  e.  CC  ->  (
0  x.  B )  =  0 )
2119, 20eqtr4d 2229 . . 3  |-  ( B  e.  CC  ->  (
0 (.g ` fld ) B )  =  ( 0  x.  B
) )
22 oveq1 5926 . . . . 5  |-  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( (
y (.g ` fld ) B )  +  B )  =  ( ( y  x.  B
)  +  B ) )
23 cnring 14069 . . . . . . . 8  |-fld  e.  Ring
24 ringmnd 13505 . . . . . . . 8  |-  (fld  e.  Ring  ->fld  e.  Mnd )
2523, 24ax-mp 5 . . . . . . 7  |-fld  e.  Mnd
26 cnfldadd 14061 . . . . . . . 8  |-  +  =  ( +g  ` fld )
2716, 18, 26mulgnn0p1 13206 . . . . . . 7  |-  ( (fld  e. 
Mnd  /\  y  e.  NN0 
/\  B  e.  CC )  ->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y (.g ` fld ) B )  +  B ) )
2825, 27mp3an1 1335 . . . . . 6  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y (.g ` fld ) B )  +  B
) )
29 nn0cn 9253 . . . . . . . 8  |-  ( y  e.  NN0  ->  y  e.  CC )
3029adantr 276 . . . . . . 7  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  y  e.  CC )
31 simpr 110 . . . . . . 7  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  B  e.  CC )
3230, 31adddirp1d 8048 . . . . . 6  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( y  +  1 )  x.  B
)  =  ( ( y  x.  B )  +  B ) )
3328, 32eqeq12d 2208 . . . . 5  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B )  <-> 
( ( y (.g ` fld ) B )  +  B
)  =  ( ( y  x.  B )  +  B ) ) )
3422, 33imbitrrid 156 . . . 4  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B )  ->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B ) ) )
3534expcom 116 . . 3  |-  ( B  e.  CC  ->  (
y  e.  NN0  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( (
y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B
) ) ) )
36 fveq2 5555 . . . . 5  |-  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( ( invg ` fld ) `  ( y (.g ` fld ) B ) )  =  ( ( invg ` fld ) `  ( y  x.  B ) ) )
37 eqid 2193 . . . . . . 7  |-  ( invg ` fld )  =  ( invg ` fld )
3816, 18, 37mulgnegnn 13205 . . . . . 6  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( -u y (.g ` fld ) B )  =  ( ( invg ` fld ) `  ( y (.g ` fld ) B ) ) )
39 nncn 8992 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  CC )
40 mulneg1 8416 . . . . . . . 8  |-  ( ( y  e.  CC  /\  B  e.  CC )  ->  ( -u y  x.  B )  =  -u ( y  x.  B
) )
4139, 40sylan 283 . . . . . . 7  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( -u y  x.  B )  =  -u ( y  x.  B
) )
42 mulcl 8001 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  B  e.  CC )  ->  ( y  x.  B
)  e.  CC )
4339, 42sylan 283 . . . . . . . 8  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( y  x.  B
)  e.  CC )
44 cnfldneg 14072 . . . . . . . 8  |-  ( ( y  x.  B )  e.  CC  ->  (
( invg ` fld ) `  ( y  x.  B
) )  =  -u ( y  x.  B
) )
4543, 44syl 14 . . . . . . 7  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( ( invg ` fld ) `  ( y  x.  B ) )  = 
-u ( y  x.  B ) )
4641, 45eqtr4d 2229 . . . . . 6  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( -u y  x.  B )  =  ( ( invg ` fld ) `  ( y  x.  B
) ) )
4738, 46eqeq12d 2208 . . . . 5  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B )  <->  ( ( invg ` fld ) `  ( y (.g ` fld ) B ) )  =  ( ( invg ` fld ) `  ( y  x.  B ) ) ) )
4836, 47imbitrrid 156 . . . 4  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B )  ->  ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B ) ) )
4948expcom 116 . . 3  |-  ( B  e.  CC  ->  (
y  e.  NN  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B ) ) ) )
503, 6, 9, 12, 15, 21, 35, 49zindd 9438 . 2  |-  ( B  e.  CC  ->  ( A  e.  ZZ  ->  ( A (.g ` fld ) B )  =  ( A  x.  B
) ) )
5150impcom 125 1  |-  ( ( A  e.  ZZ  /\  B  e.  CC )  ->  ( A (.g ` fld ) B )  =  ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879   -ucneg 8193   NNcn 8984   NN0cn0 9243   ZZcz 9320   Mndcmnd 13000   invgcminusg 13076  .gcmg 13192   Ringcrg 13495  ℂfldccnfld 14055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-rp 9723  df-fz 10078  df-seqfrec 10522  df-cj 10989  df-abs 11146  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-starv 12713  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-0g 12872  df-topgen 12874  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-mulg 13193  df-cmn 13359  df-mgp 13420  df-ring 13497  df-cring 13498  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056
This theorem is referenced by:  zsssubrg  14084  zringmulg  14097  mulgrhm2  14109
  Copyright terms: Public domain W3C validator