ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldmulg Unicode version

Theorem cnfldmulg 14540
Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
cnfldmulg  |-  ( ( A  e.  ZZ  /\  B  e.  CC )  ->  ( A (.g ` fld ) B )  =  ( A  x.  B
) )

Proof of Theorem cnfldmulg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6008 . . . 4  |-  ( x  =  0  ->  (
x (.g ` fld ) B )  =  ( 0 (.g ` fld ) B ) )
2 oveq1 6008 . . . 4  |-  ( x  =  0  ->  (
x  x.  B )  =  ( 0  x.  B ) )
31, 2eqeq12d 2244 . . 3  |-  ( x  =  0  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( 0 (.g ` fld ) B )  =  ( 0  x.  B ) ) )
4 oveq1 6008 . . . 4  |-  ( x  =  y  ->  (
x (.g ` fld ) B )  =  ( y (.g ` fld ) B ) )
5 oveq1 6008 . . . 4  |-  ( x  =  y  ->  (
x  x.  B )  =  ( y  x.  B ) )
64, 5eqeq12d 2244 . . 3  |-  ( x  =  y  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( y (.g ` fld ) B )  =  ( y  x.  B ) ) )
7 oveq1 6008 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x (.g ` fld ) B )  =  ( ( y  +  1 ) (.g ` fld ) B ) )
8 oveq1 6008 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x  x.  B )  =  ( ( y  +  1 )  x.  B ) )
97, 8eqeq12d 2244 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B ) ) )
10 oveq1 6008 . . . 4  |-  ( x  =  -u y  ->  (
x (.g ` fld ) B )  =  ( -u y (.g ` fld ) B ) )
11 oveq1 6008 . . . 4  |-  ( x  =  -u y  ->  (
x  x.  B )  =  ( -u y  x.  B ) )
1210, 11eqeq12d 2244 . . 3  |-  ( x  =  -u y  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B ) ) )
13 oveq1 6008 . . . 4  |-  ( x  =  A  ->  (
x (.g ` fld ) B )  =  ( A (.g ` fld ) B ) )
14 oveq1 6008 . . . 4  |-  ( x  =  A  ->  (
x  x.  B )  =  ( A  x.  B ) )
1513, 14eqeq12d 2244 . . 3  |-  ( x  =  A  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( A (.g ` fld ) B )  =  ( A  x.  B ) ) )
16 cnfldbas 14524 . . . . 5  |-  CC  =  ( Base ` fld )
17 cnfld0 14535 . . . . 5  |-  0  =  ( 0g ` fld )
18 eqid 2229 . . . . 5  |-  (.g ` fld )  =  (.g ` fld )
1916, 17, 18mulg0 13662 . . . 4  |-  ( B  e.  CC  ->  (
0 (.g ` fld ) B )  =  0 )
20 mul02 8533 . . . 4  |-  ( B  e.  CC  ->  (
0  x.  B )  =  0 )
2119, 20eqtr4d 2265 . . 3  |-  ( B  e.  CC  ->  (
0 (.g ` fld ) B )  =  ( 0  x.  B
) )
22 oveq1 6008 . . . . 5  |-  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( (
y (.g ` fld ) B )  +  B )  =  ( ( y  x.  B
)  +  B ) )
23 cnring 14534 . . . . . . . 8  |-fld  e.  Ring
24 ringmnd 13969 . . . . . . . 8  |-  (fld  e.  Ring  ->fld  e.  Mnd )
2523, 24ax-mp 5 . . . . . . 7  |-fld  e.  Mnd
26 cnfldadd 14526 . . . . . . . 8  |-  +  =  ( +g  ` fld )
2716, 18, 26mulgnn0p1 13670 . . . . . . 7  |-  ( (fld  e. 
Mnd  /\  y  e.  NN0 
/\  B  e.  CC )  ->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y (.g ` fld ) B )  +  B ) )
2825, 27mp3an1 1358 . . . . . 6  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y (.g ` fld ) B )  +  B
) )
29 nn0cn 9379 . . . . . . . 8  |-  ( y  e.  NN0  ->  y  e.  CC )
3029adantr 276 . . . . . . 7  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  y  e.  CC )
31 simpr 110 . . . . . . 7  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  B  e.  CC )
3230, 31adddirp1d 8173 . . . . . 6  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( y  +  1 )  x.  B
)  =  ( ( y  x.  B )  +  B ) )
3328, 32eqeq12d 2244 . . . . 5  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B )  <-> 
( ( y (.g ` fld ) B )  +  B
)  =  ( ( y  x.  B )  +  B ) ) )
3422, 33imbitrrid 156 . . . 4  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B )  ->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B ) ) )
3534expcom 116 . . 3  |-  ( B  e.  CC  ->  (
y  e.  NN0  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( (
y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B
) ) ) )
36 fveq2 5627 . . . . 5  |-  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( ( invg ` fld ) `  ( y (.g ` fld ) B ) )  =  ( ( invg ` fld ) `  ( y  x.  B ) ) )
37 eqid 2229 . . . . . . 7  |-  ( invg ` fld )  =  ( invg ` fld )
3816, 18, 37mulgnegnn 13669 . . . . . 6  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( -u y (.g ` fld ) B )  =  ( ( invg ` fld ) `  ( y (.g ` fld ) B ) ) )
39 nncn 9118 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  CC )
40 mulneg1 8541 . . . . . . . 8  |-  ( ( y  e.  CC  /\  B  e.  CC )  ->  ( -u y  x.  B )  =  -u ( y  x.  B
) )
4139, 40sylan 283 . . . . . . 7  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( -u y  x.  B )  =  -u ( y  x.  B
) )
42 mulcl 8126 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  B  e.  CC )  ->  ( y  x.  B
)  e.  CC )
4339, 42sylan 283 . . . . . . . 8  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( y  x.  B
)  e.  CC )
44 cnfldneg 14537 . . . . . . . 8  |-  ( ( y  x.  B )  e.  CC  ->  (
( invg ` fld ) `  ( y  x.  B
) )  =  -u ( y  x.  B
) )
4543, 44syl 14 . . . . . . 7  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( ( invg ` fld ) `  ( y  x.  B ) )  = 
-u ( y  x.  B ) )
4641, 45eqtr4d 2265 . . . . . 6  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( -u y  x.  B )  =  ( ( invg ` fld ) `  ( y  x.  B
) ) )
4738, 46eqeq12d 2244 . . . . 5  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B )  <->  ( ( invg ` fld ) `  ( y (.g ` fld ) B ) )  =  ( ( invg ` fld ) `  ( y  x.  B ) ) ) )
4836, 47imbitrrid 156 . . . 4  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B )  ->  ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B ) ) )
4948expcom 116 . . 3  |-  ( B  e.  CC  ->  (
y  e.  NN  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B ) ) ) )
503, 6, 9, 12, 15, 21, 35, 49zindd 9565 . 2  |-  ( B  e.  CC  ->  ( A  e.  ZZ  ->  ( A (.g ` fld ) B )  =  ( A  x.  B
) ) )
5150impcom 125 1  |-  ( ( A  e.  ZZ  /\  B  e.  CC )  ->  ( A (.g ` fld ) B )  =  ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004   -ucneg 8318   NNcn 9110   NN0cn0 9369   ZZcz 9446   Mndcmnd 13449   invgcminusg 13534  .gcmg 13656   Ringcrg 13959  ℂfldccnfld 14520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-uz 9723  df-rp 9850  df-fz 10205  df-seqfrec 10670  df-cj 11353  df-abs 11510  df-struct 13034  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-starv 13125  df-tset 13129  df-ple 13130  df-ds 13132  df-unif 13133  df-0g 13291  df-topgen 13293  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-mulg 13657  df-cmn 13823  df-mgp 13884  df-ring 13961  df-cring 13962  df-bl 14510  df-mopn 14511  df-fg 14513  df-metu 14514  df-cnfld 14521
This theorem is referenced by:  zsssubrg  14549  zringmulg  14562  mulgrhm2  14574
  Copyright terms: Public domain W3C validator