ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrtr Unicode version

Theorem dvdsrtr 13733
Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
dvdsrtr  |-  ( ( R  e.  Ring  /\  Y  .|| 
Z  /\  Z  .||  X )  ->  Y  .||  X )

Proof of Theorem dvdsrtr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . . . 7  |-  B  =  ( Base `  R
)
21a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  B  =  ( Base `  R
) )
3 dvdsr.2 . . . . . . 7  |-  .||  =  (
||r `  R )
43a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  .||  =  (
||r `  R ) )
5 ringsrg 13679 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
6 eqidd 2197 . . . . . 6  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( .r `  R
) )
72, 4, 5, 6dvdsrd 13726 . . . . 5  |-  ( R  e.  Ring  ->  ( Y 
.||  Z  <->  ( Y  e.  B  /\  E. y  e.  B  ( y
( .r `  R
) Y )  =  Z ) ) )
82, 4, 5, 6dvdsrd 13726 . . . . 5  |-  ( R  e.  Ring  ->  ( Z 
.||  X  <->  ( Z  e.  B  /\  E. x  e.  B  ( x
( .r `  R
) Z )  =  X ) ) )
97, 8anbi12d 473 . . . 4  |-  ( R  e.  Ring  ->  ( ( Y  .||  Z  /\  Z  .||  X )  <->  ( ( Y  e.  B  /\  E. y  e.  B  ( y ( .r `  R ) Y )  =  Z )  /\  ( Z  e.  B  /\  E. x  e.  B  ( x ( .r
`  R ) Z )  =  X ) ) ) )
10 an4 586 . . . 4  |-  ( ( ( Y  e.  B  /\  E. y  e.  B  ( y ( .r
`  R ) Y )  =  Z )  /\  ( Z  e.  B  /\  E. x  e.  B  ( x
( .r `  R
) Z )  =  X ) )  <->  ( ( Y  e.  B  /\  Z  e.  B )  /\  ( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) ) )
119, 10bitrdi 196 . . 3  |-  ( R  e.  Ring  ->  ( ( Y  .||  Z  /\  Z  .||  X )  <->  ( ( Y  e.  B  /\  Z  e.  B )  /\  ( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) ) ) )
12 reeanv 2667 . . . . 5  |-  ( E. y  e.  B  E. x  e.  B  (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  <-> 
( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) )
131a1i 9 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  B  =  ( Base `  R )
)
143a1i 9 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  .||  =  (
||r `  R ) )
155ad2antrr 488 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  R  e. SRing )
16 eqidd 2197 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( .r `  R )  =  ( .r `  R ) )
17 simplrl 535 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  e.  B )
18 simpll 527 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  R  e.  Ring )
19 simprr 531 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  x  e.  B )
20 simprl 529 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  y  e.  B )
21 eqid 2196 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
221, 21ringcl 13645 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  R ) y )  e.  B )
2318, 19, 20, 22syl3anc 1249 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( x
( .r `  R
) y )  e.  B )
2413, 14, 15, 16, 17, 23dvdsrmuld 13728 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  .||  ( ( x ( .r `  R ) y ) ( .r `  R
) Y ) )
251, 21ringass 13648 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  Y  e.  B )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) Y )  =  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) ) )
2618, 19, 20, 17, 25syl13anc 1251 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) Y )  =  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) ) )
2724, 26breqtrd 4060 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  .||  ( x ( .r `  R
) ( y ( .r `  R ) Y ) ) )
28 oveq2 5933 . . . . . . . . 9  |-  ( ( y ( .r `  R ) Y )  =  Z  ->  (
x ( .r `  R ) ( y ( .r `  R
) Y ) )  =  ( x ( .r `  R ) Z ) )
29 id 19 . . . . . . . . 9  |-  ( ( x ( .r `  R ) Z )  =  X  ->  (
x ( .r `  R ) Z )  =  X )
3028, 29sylan9eq 2249 . . . . . . . 8  |-  ( ( ( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  ( x ( .r `  R ) ( y ( .r
`  R ) Y ) )  =  X )
3130breq2d 4046 . . . . . . 7  |-  ( ( ( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  ( Y  .||  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) )  <->  Y  .||  X ) )
3227, 31syl5ibcom 155 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  Y  .||  X ) )
3332rexlimdvva 2622 . . . . 5  |-  ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B )
)  ->  ( E. y  e.  B  E. x  e.  B  (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  Y  .||  X ) )
3412, 33biimtrrid 153 . . . 4  |-  ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B )
)  ->  ( ( E. y  e.  B  ( y ( .r
`  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X )  ->  Y  .||  X ) )
3534expimpd 363 . . 3  |-  ( R  e.  Ring  ->  ( ( ( Y  e.  B  /\  Z  e.  B
)  /\  ( E. y  e.  B  (
y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  (
x ( .r `  R ) Z )  =  X ) )  ->  Y  .||  X ) )
3611, 35sylbid 150 . 2  |-  ( R  e.  Ring  ->  ( ( Y  .||  Z  /\  Z  .||  X )  ->  Y  .||  X ) )
37363impib 1203 1  |-  ( ( R  e.  Ring  /\  Y  .|| 
Z  /\  Z  .||  X )  ->  Y  .||  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   Basecbs 12703   .rcmulr 12781  SRingcsrg 13595   Ringcrg 13628   ||rcdsr 13718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-dvdsr 13721
This theorem is referenced by:  dvdsunit  13744  unitmulcl  13745  unitnegcl  13762
  Copyright terms: Public domain W3C validator