ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrtr Unicode version

Theorem dvdsrtr 13263
Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
dvdsrtr  |-  ( ( R  e.  Ring  /\  Y  .|| 
Z  /\  Z  .||  X )  ->  Y  .||  X )

Proof of Theorem dvdsrtr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . . . 7  |-  B  =  ( Base `  R
)
21a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  B  =  ( Base `  R
) )
3 dvdsr.2 . . . . . . 7  |-  .||  =  (
||r `  R )
43a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  .||  =  (
||r `  R ) )
5 ringsrg 13217 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
6 eqidd 2178 . . . . . 6  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( .r `  R
) )
72, 4, 5, 6dvdsrd 13256 . . . . 5  |-  ( R  e.  Ring  ->  ( Y 
.||  Z  <->  ( Y  e.  B  /\  E. y  e.  B  ( y
( .r `  R
) Y )  =  Z ) ) )
82, 4, 5, 6dvdsrd 13256 . . . . 5  |-  ( R  e.  Ring  ->  ( Z 
.||  X  <->  ( Z  e.  B  /\  E. x  e.  B  ( x
( .r `  R
) Z )  =  X ) ) )
97, 8anbi12d 473 . . . 4  |-  ( R  e.  Ring  ->  ( ( Y  .||  Z  /\  Z  .||  X )  <->  ( ( Y  e.  B  /\  E. y  e.  B  ( y ( .r `  R ) Y )  =  Z )  /\  ( Z  e.  B  /\  E. x  e.  B  ( x ( .r
`  R ) Z )  =  X ) ) ) )
10 an4 586 . . . 4  |-  ( ( ( Y  e.  B  /\  E. y  e.  B  ( y ( .r
`  R ) Y )  =  Z )  /\  ( Z  e.  B  /\  E. x  e.  B  ( x
( .r `  R
) Z )  =  X ) )  <->  ( ( Y  e.  B  /\  Z  e.  B )  /\  ( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) ) )
119, 10bitrdi 196 . . 3  |-  ( R  e.  Ring  ->  ( ( Y  .||  Z  /\  Z  .||  X )  <->  ( ( Y  e.  B  /\  Z  e.  B )  /\  ( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) ) ) )
12 reeanv 2646 . . . . 5  |-  ( E. y  e.  B  E. x  e.  B  (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  <-> 
( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) )
131a1i 9 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  B  =  ( Base `  R )
)
143a1i 9 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  .||  =  (
||r `  R ) )
155ad2antrr 488 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  R  e. SRing )
16 eqidd 2178 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( .r `  R )  =  ( .r `  R ) )
17 simplrl 535 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  e.  B )
18 simpll 527 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  R  e.  Ring )
19 simprr 531 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  x  e.  B )
20 simprl 529 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  y  e.  B )
21 eqid 2177 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
221, 21ringcl 13189 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  R ) y )  e.  B )
2318, 19, 20, 22syl3anc 1238 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( x
( .r `  R
) y )  e.  B )
2413, 14, 15, 16, 17, 23dvdsrmuld 13258 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  .||  ( ( x ( .r `  R ) y ) ( .r `  R
) Y ) )
251, 21ringass 13192 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  Y  e.  B )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) Y )  =  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) ) )
2618, 19, 20, 17, 25syl13anc 1240 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) Y )  =  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) ) )
2724, 26breqtrd 4029 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  .||  ( x ( .r `  R
) ( y ( .r `  R ) Y ) ) )
28 oveq2 5882 . . . . . . . . 9  |-  ( ( y ( .r `  R ) Y )  =  Z  ->  (
x ( .r `  R ) ( y ( .r `  R
) Y ) )  =  ( x ( .r `  R ) Z ) )
29 id 19 . . . . . . . . 9  |-  ( ( x ( .r `  R ) Z )  =  X  ->  (
x ( .r `  R ) Z )  =  X )
3028, 29sylan9eq 2230 . . . . . . . 8  |-  ( ( ( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  ( x ( .r `  R ) ( y ( .r
`  R ) Y ) )  =  X )
3130breq2d 4015 . . . . . . 7  |-  ( ( ( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  ( Y  .||  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) )  <->  Y  .||  X ) )
3227, 31syl5ibcom 155 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  Y  .||  X ) )
3332rexlimdvva 2602 . . . . 5  |-  ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B )
)  ->  ( E. y  e.  B  E. x  e.  B  (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  Y  .||  X ) )
3412, 33biimtrrid 153 . . . 4  |-  ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B )
)  ->  ( ( E. y  e.  B  ( y ( .r
`  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X )  ->  Y  .||  X ) )
3534expimpd 363 . . 3  |-  ( R  e.  Ring  ->  ( ( ( Y  e.  B  /\  Z  e.  B
)  /\  ( E. y  e.  B  (
y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  (
x ( .r `  R ) Z )  =  X ) )  ->  Y  .||  X ) )
3611, 35sylbid 150 . 2  |-  ( R  e.  Ring  ->  ( ( Y  .||  Z  /\  Z  .||  X )  ->  Y  .||  X ) )
37363impib 1201 1  |-  ( ( R  e.  Ring  /\  Y  .|| 
Z  /\  Z  .||  X )  ->  Y  .||  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   Basecbs 12456   .rcmulr 12531  SRingcsrg 13139   Ringcrg 13172   ||rcdsr 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-plusg 12543  df-mulr 12544  df-0g 12701  df-mgm 12769  df-sgrp 12802  df-mnd 12812  df-grp 12874  df-minusg 12875  df-cmn 13083  df-abl 13084  df-mgp 13124  df-ur 13136  df-srg 13140  df-ring 13174  df-dvdsr 13251
This theorem is referenced by:  dvdsunit  13274  unitmulcl  13275  unitnegcl  13292
  Copyright terms: Public domain W3C validator