Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xporderlem | Unicode version |
Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.) |
Ref | Expression |
---|---|
xporderlem.1 |
Ref | Expression |
---|---|
xporderlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3990 | . . 3 | |
2 | xporderlem.1 | . . . 4 | |
3 | 2 | eleq2i 2237 | . . 3 |
4 | 1, 3 | bitri 183 | . 2 |
5 | vex 2733 | . . . 4 | |
6 | vex 2733 | . . . 4 | |
7 | 5, 6 | opex 4214 | . . 3 |
8 | vex 2733 | . . . 4 | |
9 | vex 2733 | . . . 4 | |
10 | 8, 9 | opex 4214 | . . 3 |
11 | eleq1 2233 | . . . . . 6 | |
12 | opelxp 4641 | . . . . . 6 | |
13 | 11, 12 | bitrdi 195 | . . . . 5 |
14 | 13 | anbi1d 462 | . . . 4 |
15 | 5, 6 | op1std 6127 | . . . . . 6 |
16 | 15 | breq1d 3999 | . . . . 5 |
17 | 15 | eqeq1d 2179 | . . . . . 6 |
18 | 5, 6 | op2ndd 6128 | . . . . . . 7 |
19 | 18 | breq1d 3999 | . . . . . 6 |
20 | 17, 19 | anbi12d 470 | . . . . 5 |
21 | 16, 20 | orbi12d 788 | . . . 4 |
22 | 14, 21 | anbi12d 470 | . . 3 |
23 | eleq1 2233 | . . . . . 6 | |
24 | opelxp 4641 | . . . . . 6 | |
25 | 23, 24 | bitrdi 195 | . . . . 5 |
26 | 25 | anbi2d 461 | . . . 4 |
27 | 8, 9 | op1std 6127 | . . . . . 6 |
28 | 27 | breq2d 4001 | . . . . 5 |
29 | 27 | eqeq2d 2182 | . . . . . 6 |
30 | 8, 9 | op2ndd 6128 | . . . . . . 7 |
31 | 30 | breq2d 4001 | . . . . . 6 |
32 | 29, 31 | anbi12d 470 | . . . . 5 |
33 | 28, 32 | orbi12d 788 | . . . 4 |
34 | 26, 33 | anbi12d 470 | . . 3 |
35 | 7, 10, 22, 34 | opelopab 4256 | . 2 |
36 | an4 581 | . . 3 | |
37 | 36 | anbi1i 455 | . 2 |
38 | 4, 35, 37 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wo 703 wceq 1348 wcel 2141 cop 3586 class class class wbr 3989 copab 4049 cxp 4609 cfv 5198 c1st 6117 c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fv 5206 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: poxp 6211 |
Copyright terms: Public domain | W3C validator |