ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xporderlem Unicode version

Theorem xporderlem 6210
Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
Hypothesis
Ref Expression
xporderlem.1  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
xporderlem  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<->  ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
Distinct variable groups:    x, A, y   
x, B, y    x, R, y    x, S, y   
x, a, y    x, b, y    x, c, y   
x, d, y
Allowed substitution hints:    A( a, b, c, d)    B( a, b, c, d)    R( a, b, c, d)    S( a, b, c, d)    T( x, y, a, b, c, d)

Proof of Theorem xporderlem
StepHypRef Expression
1 df-br 3990 . . 3  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<-> 
<. <. a ,  b
>. ,  <. c ,  d >. >.  e.  T )
2 xporderlem.1 . . . 4  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
32eleq2i 2237 . . 3  |-  ( <. <. a ,  b >. ,  <. c ,  d
>. >.  e.  T  <->  <. <. a ,  b >. ,  <. c ,  d >. >.  e.  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B
) )  /\  (
( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) } )
41, 3bitri 183 . 2  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<-> 
<. <. a ,  b
>. ,  <. c ,  d >. >.  e.  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) ) ) ) } )
5 vex 2733 . . . 4  |-  a  e. 
_V
6 vex 2733 . . . 4  |-  b  e. 
_V
75, 6opex 4214 . . 3  |-  <. a ,  b >.  e.  _V
8 vex 2733 . . . 4  |-  c  e. 
_V
9 vex 2733 . . . 4  |-  d  e. 
_V
108, 9opex 4214 . . 3  |-  <. c ,  d >.  e.  _V
11 eleq1 2233 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( x  e.  ( A  X.  B
)  <->  <. a ,  b
>.  e.  ( A  X.  B ) ) )
12 opelxp 4641 . . . . . 6  |-  ( <.
a ,  b >.  e.  ( A  X.  B
)  <->  ( a  e.  A  /\  b  e.  B ) )
1311, 12bitrdi 195 . . . . 5  |-  ( x  =  <. a ,  b
>.  ->  ( x  e.  ( A  X.  B
)  <->  ( a  e.  A  /\  b  e.  B ) ) )
1413anbi1d 462 . . . 4  |-  ( x  =  <. a ,  b
>.  ->  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B
) )  <->  ( (
a  e.  A  /\  b  e.  B )  /\  y  e.  ( A  X.  B ) ) ) )
155, 6op1std 6127 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( 1st `  x
)  =  a )
1615breq1d 3999 . . . . 5  |-  ( x  =  <. a ,  b
>.  ->  ( ( 1st `  x ) R ( 1st `  y )  <-> 
a R ( 1st `  y ) ) )
1715eqeq1d 2179 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( ( 1st `  x )  =  ( 1st `  y )  <-> 
a  =  ( 1st `  y ) ) )
185, 6op2ndd 6128 . . . . . . 7  |-  ( x  =  <. a ,  b
>.  ->  ( 2nd `  x
)  =  b )
1918breq1d 3999 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( ( 2nd `  x ) S ( 2nd `  y )  <-> 
b S ( 2nd `  y ) ) )
2017, 19anbi12d 470 . . . . 5  |-  ( x  =  <. a ,  b
>.  ->  ( ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) )  <->  ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) ) ) )
2116, 20orbi12d 788 . . . 4  |-  ( x  =  <. a ,  b
>.  ->  ( ( ( 1st `  x ) R ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) ) )  <->  ( a R ( 1st `  y
)  \/  ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) ) ) ) )
2214, 21anbi12d 470 . . 3  |-  ( x  =  <. a ,  b
>.  ->  ( ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) )  <-> 
( ( ( a  e.  A  /\  b  e.  B )  /\  y  e.  ( A  X.  B
) )  /\  (
a R ( 1st `  y )  \/  (
a  =  ( 1st `  y )  /\  b S ( 2nd `  y
) ) ) ) ) )
23 eleq1 2233 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( y  e.  ( A  X.  B
)  <->  <. c ,  d
>.  e.  ( A  X.  B ) ) )
24 opelxp 4641 . . . . . 6  |-  ( <.
c ,  d >.  e.  ( A  X.  B
)  <->  ( c  e.  A  /\  d  e.  B ) )
2523, 24bitrdi 195 . . . . 5  |-  ( y  =  <. c ,  d
>.  ->  ( y  e.  ( A  X.  B
)  <->  ( c  e.  A  /\  d  e.  B ) ) )
2625anbi2d 461 . . . 4  |-  ( y  =  <. c ,  d
>.  ->  ( ( ( a  e.  A  /\  b  e.  B )  /\  y  e.  ( A  X.  B ) )  <-> 
( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
) ) )
278, 9op1std 6127 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( 1st `  y
)  =  c )
2827breq2d 4001 . . . . 5  |-  ( y  =  <. c ,  d
>.  ->  ( a R ( 1st `  y
)  <->  a R c ) )
2927eqeq2d 2182 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( a  =  ( 1st `  y
)  <->  a  =  c ) )
308, 9op2ndd 6128 . . . . . . 7  |-  ( y  =  <. c ,  d
>.  ->  ( 2nd `  y
)  =  d )
3130breq2d 4001 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( b S ( 2nd `  y
)  <->  b S d ) )
3229, 31anbi12d 470 . . . . 5  |-  ( y  =  <. c ,  d
>.  ->  ( ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) )  <->  ( a  =  c  /\  b S d ) ) )
3328, 32orbi12d 788 . . . 4  |-  ( y  =  <. c ,  d
>.  ->  ( ( a R ( 1st `  y
)  \/  ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) ) )  <->  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
3426, 33anbi12d 470 . . 3  |-  ( y  =  <. c ,  d
>.  ->  ( ( ( ( a  e.  A  /\  b  e.  B
)  /\  y  e.  ( A  X.  B
) )  /\  (
a R ( 1st `  y )  \/  (
a  =  ( 1st `  y )  /\  b S ( 2nd `  y
) ) ) )  <-> 
( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) ) )
357, 10, 22, 34opelopab 4256 . 2  |-  ( <. <. a ,  b >. ,  <. c ,  d
>. >.  e.  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) ) ) ) }  <-> 
( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
36 an4 581 . . 3  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B ) )  <->  ( (
a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) ) )
3736anbi1i 455 . 2  |-  ( ( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  <->  ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) ) )
384, 35, 373bitri 205 1  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<->  ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   <.cop 3586   class class class wbr 3989   {copab 4049    X. cxp 4609   ` cfv 5198   1stc1st 6117   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-1st 6119  df-2nd 6120
This theorem is referenced by:  poxp  6211
  Copyright terms: Public domain W3C validator