| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xporderlem | Unicode version | ||
| Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.) |
| Ref | Expression |
|---|---|
| xporderlem.1 |
|
| Ref | Expression |
|---|---|
| xporderlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4044 |
. . 3
| |
| 2 | xporderlem.1 |
. . . 4
| |
| 3 | 2 | eleq2i 2271 |
. . 3
|
| 4 | 1, 3 | bitri 184 |
. 2
|
| 5 | vex 2774 |
. . . 4
| |
| 6 | vex 2774 |
. . . 4
| |
| 7 | 5, 6 | opex 4272 |
. . 3
|
| 8 | vex 2774 |
. . . 4
| |
| 9 | vex 2774 |
. . . 4
| |
| 10 | 8, 9 | opex 4272 |
. . 3
|
| 11 | eleq1 2267 |
. . . . . 6
| |
| 12 | opelxp 4704 |
. . . . . 6
| |
| 13 | 11, 12 | bitrdi 196 |
. . . . 5
|
| 14 | 13 | anbi1d 465 |
. . . 4
|
| 15 | 5, 6 | op1std 6233 |
. . . . . 6
|
| 16 | 15 | breq1d 4053 |
. . . . 5
|
| 17 | 15 | eqeq1d 2213 |
. . . . . 6
|
| 18 | 5, 6 | op2ndd 6234 |
. . . . . . 7
|
| 19 | 18 | breq1d 4053 |
. . . . . 6
|
| 20 | 17, 19 | anbi12d 473 |
. . . . 5
|
| 21 | 16, 20 | orbi12d 794 |
. . . 4
|
| 22 | 14, 21 | anbi12d 473 |
. . 3
|
| 23 | eleq1 2267 |
. . . . . 6
| |
| 24 | opelxp 4704 |
. . . . . 6
| |
| 25 | 23, 24 | bitrdi 196 |
. . . . 5
|
| 26 | 25 | anbi2d 464 |
. . . 4
|
| 27 | 8, 9 | op1std 6233 |
. . . . . 6
|
| 28 | 27 | breq2d 4055 |
. . . . 5
|
| 29 | 27 | eqeq2d 2216 |
. . . . . 6
|
| 30 | 8, 9 | op2ndd 6234 |
. . . . . . 7
|
| 31 | 30 | breq2d 4055 |
. . . . . 6
|
| 32 | 29, 31 | anbi12d 473 |
. . . . 5
|
| 33 | 28, 32 | orbi12d 794 |
. . . 4
|
| 34 | 26, 33 | anbi12d 473 |
. . 3
|
| 35 | 7, 10, 22, 34 | opelopab 4317 |
. 2
|
| 36 | an4 586 |
. . 3
| |
| 37 | 36 | anbi1i 458 |
. 2
|
| 38 | 4, 35, 37 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fv 5278 df-1st 6225 df-2nd 6226 |
| This theorem is referenced by: poxp 6317 |
| Copyright terms: Public domain | W3C validator |