Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xporderlem | Unicode version |
Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.) |
Ref | Expression |
---|---|
xporderlem.1 |
Ref | Expression |
---|---|
xporderlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3983 | . . 3 | |
2 | xporderlem.1 | . . . 4 | |
3 | 2 | eleq2i 2233 | . . 3 |
4 | 1, 3 | bitri 183 | . 2 |
5 | vex 2729 | . . . 4 | |
6 | vex 2729 | . . . 4 | |
7 | 5, 6 | opex 4207 | . . 3 |
8 | vex 2729 | . . . 4 | |
9 | vex 2729 | . . . 4 | |
10 | 8, 9 | opex 4207 | . . 3 |
11 | eleq1 2229 | . . . . . 6 | |
12 | opelxp 4634 | . . . . . 6 | |
13 | 11, 12 | bitrdi 195 | . . . . 5 |
14 | 13 | anbi1d 461 | . . . 4 |
15 | 5, 6 | op1std 6116 | . . . . . 6 |
16 | 15 | breq1d 3992 | . . . . 5 |
17 | 15 | eqeq1d 2174 | . . . . . 6 |
18 | 5, 6 | op2ndd 6117 | . . . . . . 7 |
19 | 18 | breq1d 3992 | . . . . . 6 |
20 | 17, 19 | anbi12d 465 | . . . . 5 |
21 | 16, 20 | orbi12d 783 | . . . 4 |
22 | 14, 21 | anbi12d 465 | . . 3 |
23 | eleq1 2229 | . . . . . 6 | |
24 | opelxp 4634 | . . . . . 6 | |
25 | 23, 24 | bitrdi 195 | . . . . 5 |
26 | 25 | anbi2d 460 | . . . 4 |
27 | 8, 9 | op1std 6116 | . . . . . 6 |
28 | 27 | breq2d 3994 | . . . . 5 |
29 | 27 | eqeq2d 2177 | . . . . . 6 |
30 | 8, 9 | op2ndd 6117 | . . . . . . 7 |
31 | 30 | breq2d 3994 | . . . . . 6 |
32 | 29, 31 | anbi12d 465 | . . . . 5 |
33 | 28, 32 | orbi12d 783 | . . . 4 |
34 | 26, 33 | anbi12d 465 | . . 3 |
35 | 7, 10, 22, 34 | opelopab 4249 | . 2 |
36 | an4 576 | . . 3 | |
37 | 36 | anbi1i 454 | . 2 |
38 | 4, 35, 37 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wo 698 wceq 1343 wcel 2136 cop 3579 class class class wbr 3982 copab 4042 cxp 4602 cfv 5188 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: poxp 6200 |
Copyright terms: Public domain | W3C validator |