ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xporderlem Unicode version

Theorem xporderlem 6199
Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
Hypothesis
Ref Expression
xporderlem.1  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
xporderlem  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<->  ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
Distinct variable groups:    x, A, y   
x, B, y    x, R, y    x, S, y   
x, a, y    x, b, y    x, c, y   
x, d, y
Allowed substitution hints:    A( a, b, c, d)    B( a, b, c, d)    R( a, b, c, d)    S( a, b, c, d)    T( x, y, a, b, c, d)

Proof of Theorem xporderlem
StepHypRef Expression
1 df-br 3983 . . 3  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<-> 
<. <. a ,  b
>. ,  <. c ,  d >. >.  e.  T )
2 xporderlem.1 . . . 4  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
32eleq2i 2233 . . 3  |-  ( <. <. a ,  b >. ,  <. c ,  d
>. >.  e.  T  <->  <. <. a ,  b >. ,  <. c ,  d >. >.  e.  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B
) )  /\  (
( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) } )
41, 3bitri 183 . 2  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<-> 
<. <. a ,  b
>. ,  <. c ,  d >. >.  e.  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) ) ) ) } )
5 vex 2729 . . . 4  |-  a  e. 
_V
6 vex 2729 . . . 4  |-  b  e. 
_V
75, 6opex 4207 . . 3  |-  <. a ,  b >.  e.  _V
8 vex 2729 . . . 4  |-  c  e. 
_V
9 vex 2729 . . . 4  |-  d  e. 
_V
108, 9opex 4207 . . 3  |-  <. c ,  d >.  e.  _V
11 eleq1 2229 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( x  e.  ( A  X.  B
)  <->  <. a ,  b
>.  e.  ( A  X.  B ) ) )
12 opelxp 4634 . . . . . 6  |-  ( <.
a ,  b >.  e.  ( A  X.  B
)  <->  ( a  e.  A  /\  b  e.  B ) )
1311, 12bitrdi 195 . . . . 5  |-  ( x  =  <. a ,  b
>.  ->  ( x  e.  ( A  X.  B
)  <->  ( a  e.  A  /\  b  e.  B ) ) )
1413anbi1d 461 . . . 4  |-  ( x  =  <. a ,  b
>.  ->  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B
) )  <->  ( (
a  e.  A  /\  b  e.  B )  /\  y  e.  ( A  X.  B ) ) ) )
155, 6op1std 6116 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( 1st `  x
)  =  a )
1615breq1d 3992 . . . . 5  |-  ( x  =  <. a ,  b
>.  ->  ( ( 1st `  x ) R ( 1st `  y )  <-> 
a R ( 1st `  y ) ) )
1715eqeq1d 2174 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( ( 1st `  x )  =  ( 1st `  y )  <-> 
a  =  ( 1st `  y ) ) )
185, 6op2ndd 6117 . . . . . . 7  |-  ( x  =  <. a ,  b
>.  ->  ( 2nd `  x
)  =  b )
1918breq1d 3992 . . . . . 6  |-  ( x  =  <. a ,  b
>.  ->  ( ( 2nd `  x ) S ( 2nd `  y )  <-> 
b S ( 2nd `  y ) ) )
2017, 19anbi12d 465 . . . . 5  |-  ( x  =  <. a ,  b
>.  ->  ( ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) )  <->  ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) ) ) )
2116, 20orbi12d 783 . . . 4  |-  ( x  =  <. a ,  b
>.  ->  ( ( ( 1st `  x ) R ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) ) )  <->  ( a R ( 1st `  y
)  \/  ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) ) ) ) )
2214, 21anbi12d 465 . . 3  |-  ( x  =  <. a ,  b
>.  ->  ( ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) )  <-> 
( ( ( a  e.  A  /\  b  e.  B )  /\  y  e.  ( A  X.  B
) )  /\  (
a R ( 1st `  y )  \/  (
a  =  ( 1st `  y )  /\  b S ( 2nd `  y
) ) ) ) ) )
23 eleq1 2229 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( y  e.  ( A  X.  B
)  <->  <. c ,  d
>.  e.  ( A  X.  B ) ) )
24 opelxp 4634 . . . . . 6  |-  ( <.
c ,  d >.  e.  ( A  X.  B
)  <->  ( c  e.  A  /\  d  e.  B ) )
2523, 24bitrdi 195 . . . . 5  |-  ( y  =  <. c ,  d
>.  ->  ( y  e.  ( A  X.  B
)  <->  ( c  e.  A  /\  d  e.  B ) ) )
2625anbi2d 460 . . . 4  |-  ( y  =  <. c ,  d
>.  ->  ( ( ( a  e.  A  /\  b  e.  B )  /\  y  e.  ( A  X.  B ) )  <-> 
( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
) ) )
278, 9op1std 6116 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( 1st `  y
)  =  c )
2827breq2d 3994 . . . . 5  |-  ( y  =  <. c ,  d
>.  ->  ( a R ( 1st `  y
)  <->  a R c ) )
2927eqeq2d 2177 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( a  =  ( 1st `  y
)  <->  a  =  c ) )
308, 9op2ndd 6117 . . . . . . 7  |-  ( y  =  <. c ,  d
>.  ->  ( 2nd `  y
)  =  d )
3130breq2d 3994 . . . . . 6  |-  ( y  =  <. c ,  d
>.  ->  ( b S ( 2nd `  y
)  <->  b S d ) )
3229, 31anbi12d 465 . . . . 5  |-  ( y  =  <. c ,  d
>.  ->  ( ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) )  <->  ( a  =  c  /\  b S d ) ) )
3328, 32orbi12d 783 . . . 4  |-  ( y  =  <. c ,  d
>.  ->  ( ( a R ( 1st `  y
)  \/  ( a  =  ( 1st `  y
)  /\  b S
( 2nd `  y
) ) )  <->  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
3426, 33anbi12d 465 . . 3  |-  ( y  =  <. c ,  d
>.  ->  ( ( ( ( a  e.  A  /\  b  e.  B
)  /\  y  e.  ( A  X.  B
) )  /\  (
a R ( 1st `  y )  \/  (
a  =  ( 1st `  y )  /\  b S ( 2nd `  y
) ) ) )  <-> 
( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) ) )
357, 10, 22, 34opelopab 4249 . 2  |-  ( <. <. a ,  b >. ,  <. c ,  d
>. >.  e.  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x ) S ( 2nd `  y ) ) ) ) }  <-> 
( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
36 an4 576 . . 3  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  ( c  e.  A  /\  d  e.  B ) )  <->  ( (
a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) ) )
3736anbi1i 454 . 2  |-  ( ( ( ( a  e.  A  /\  b  e.  B )  /\  (
c  e.  A  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) )  <->  ( ( ( a  e.  A  /\  c  e.  A )  /\  ( b  e.  B  /\  d  e.  B
) )  /\  (
a R c  \/  ( a  =  c  /\  b S d ) ) ) )
384, 35, 373bitri 205 1  |-  ( <.
a ,  b >. T <. c ,  d
>. 
<->  ( ( ( a  e.  A  /\  c  e.  A )  /\  (
b  e.  B  /\  d  e.  B )
)  /\  ( a R c  \/  (
a  =  c  /\  b S d ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   <.cop 3579   class class class wbr 3982   {copab 4042    X. cxp 4602   ` cfv 5188   1stc1st 6106   2ndc2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by:  poxp  6200
  Copyright terms: Public domain W3C validator