ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difrp Unicode version

Theorem difrp 9599
Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
difrp  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )

Proof of Theorem difrp
StepHypRef Expression
1 posdif 8330 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
2 resubcl 8139 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
32ancoms 266 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  -  A
)  e.  RR )
4 elrp 9562 . . . 4  |-  ( ( B  -  A )  e.  RR+  <->  ( ( B  -  A )  e.  RR  /\  0  < 
( B  -  A
) ) )
54baib 905 . . 3  |-  ( ( B  -  A )  e.  RR  ->  (
( B  -  A
)  e.  RR+  <->  0  <  ( B  -  A ) ) )
63, 5syl 14 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  -  A )  e.  RR+  <->  0  <  ( B  -  A ) ) )
71, 6bitr4d 190 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2128   class class class wbr 3965  (class class class)co 5824   RRcr 7731   0cc0 7732    < clt 7912    - cmin 8046   RR+crp 9560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-addcom 7832  ax-addass 7834  ax-distr 7836  ax-i2m1 7837  ax-0id 7840  ax-rnegex 7841  ax-cnre 7843  ax-pre-ltadd 7848
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-iota 5135  df-fun 5172  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-pnf 7914  df-mnf 7915  df-ltxr 7917  df-sub 8048  df-neg 8049  df-rp 9561
This theorem is referenced by:  lincmb01cmp  9907  iccf1o  9908  recvguniq  10895  resqrexlemcalc2  10915  resqrexlemnmsq  10917  resqrexlemnm  10918  resqrexlemoverl  10921  fsumlt  11361  expcnvap0  11399  cvgratnnlemrate  11427  eflegeo  11598  blssps  12838  blss  12839  eflt  13107  cosordlem  13181  logdivlti  13213  apdifflemf  13628
  Copyright terms: Public domain W3C validator