ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difrp Unicode version

Theorem difrp 9695
Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
difrp  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )

Proof of Theorem difrp
StepHypRef Expression
1 posdif 8415 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
2 resubcl 8224 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
32ancoms 268 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  -  A
)  e.  RR )
4 elrp 9658 . . . 4  |-  ( ( B  -  A )  e.  RR+  <->  ( ( B  -  A )  e.  RR  /\  0  < 
( B  -  A
) ) )
54baib 919 . . 3  |-  ( ( B  -  A )  e.  RR  ->  (
( B  -  A
)  e.  RR+  <->  0  <  ( B  -  A ) ) )
63, 5syl 14 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  -  A )  e.  RR+  <->  0  <  ( B  -  A ) ) )
71, 6bitr4d 191 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   class class class wbr 4005  (class class class)co 5878   RRcr 7813   0cc0 7814    < clt 7995    - cmin 8131   RR+crp 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-sub 8133  df-neg 8134  df-rp 9657
This theorem is referenced by:  lincmb01cmp  10006  iccf1o  10007  recvguniq  11007  resqrexlemcalc2  11027  resqrexlemnmsq  11029  resqrexlemnm  11030  resqrexlemoverl  11033  fsumlt  11475  expcnvap0  11513  cvgratnnlemrate  11541  eflegeo  11712  blssps  14115  blss  14116  eflt  14384  cosordlem  14458  logdivlti  14490  apdifflemf  14983
  Copyright terms: Public domain W3C validator