Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difrp | Unicode version |
Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.) |
Ref | Expression |
---|---|
difrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | posdif 8330 | . 2 | |
2 | resubcl 8139 | . . . 4 | |
3 | 2 | ancoms 266 | . . 3 |
4 | elrp 9562 | . . . 4 | |
5 | 4 | baib 905 | . . 3 |
6 | 3, 5 | syl 14 | . 2 |
7 | 1, 6 | bitr4d 190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2128 class class class wbr 3965 (class class class)co 5824 cr 7731 cc0 7732 clt 7912 cmin 8046 crp 9560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-addcom 7832 ax-addass 7834 ax-distr 7836 ax-i2m1 7837 ax-0id 7840 ax-rnegex 7841 ax-cnre 7843 ax-pre-ltadd 7848 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-iota 5135 df-fun 5172 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-pnf 7914 df-mnf 7915 df-ltxr 7917 df-sub 8048 df-neg 8049 df-rp 9561 |
This theorem is referenced by: lincmb01cmp 9907 iccf1o 9908 recvguniq 10895 resqrexlemcalc2 10915 resqrexlemnmsq 10917 resqrexlemnm 10918 resqrexlemoverl 10921 fsumlt 11361 expcnvap0 11399 cvgratnnlemrate 11427 eflegeo 11598 blssps 12838 blss 12839 eflt 13107 cosordlem 13181 logdivlti 13213 apdifflemf 13628 |
Copyright terms: Public domain | W3C validator |