ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofrss Unicode version

Theorem caofrss 6006
Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofcom.3  |-  ( ph  ->  G : A --> S )
caofrss.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y  ->  x T y ) )
Assertion
Ref Expression
caofrss  |-  ( ph  ->  ( F  oR R G  ->  F  oR T G ) )
Distinct variable groups:    x, y, F   
x, G, y    ph, x, y    x, R, y    x, S, y    x, T, y
Allowed substitution hints:    A( x, y)    V( x, y)

Proof of Theorem caofrss
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . 5  |-  ( ph  ->  F : A --> S )
21ffvelrnda 5555 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
3 caofcom.3 . . . . 5  |-  ( ph  ->  G : A --> S )
43ffvelrnda 5555 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
5 caofrss.4 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y  ->  x T y ) )
65ralrimivva 2514 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x R y  ->  x T y ) )
76adantr 274 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  A. y  e.  S  ( x R y  ->  x T y ) )
8 breq1 3932 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
x R y  <->  ( F `  w ) R y ) )
9 breq1 3932 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
x T y  <->  ( F `  w ) T y ) )
108, 9imbi12d 233 . . . . 5  |-  ( x  =  ( F `  w )  ->  (
( x R y  ->  x T y )  <->  ( ( F `
 w ) R y  ->  ( F `  w ) T y ) ) )
11 breq2 3933 . . . . . 6  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) R y  <->  ( F `  w ) R ( G `  w ) ) )
12 breq2 3933 . . . . . 6  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) T y  <->  ( F `  w ) T ( G `  w ) ) )
1311, 12imbi12d 233 . . . . 5  |-  ( y  =  ( G `  w )  ->  (
( ( F `  w ) R y  ->  ( F `  w ) T y )  <->  ( ( F `
 w ) R ( G `  w
)  ->  ( F `  w ) T ( G `  w ) ) ) )
1410, 13rspc2va 2803 . . . 4  |-  ( ( ( ( F `  w )  e.  S  /\  ( G `  w
)  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x R y  ->  x T
y ) )  -> 
( ( F `  w ) R ( G `  w )  ->  ( F `  w ) T ( G `  w ) ) )
152, 4, 7, 14syl21anc 1215 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) R ( G `
 w )  -> 
( F `  w
) T ( G `
 w ) ) )
1615ralimdva 2499 . 2  |-  ( ph  ->  ( A. w  e.  A  ( F `  w ) R ( G `  w )  ->  A. w  e.  A  ( F `  w ) T ( G `  w ) ) )
17 ffn 5272 . . . 4  |-  ( F : A --> S  ->  F  Fn  A )
181, 17syl 14 . . 3  |-  ( ph  ->  F  Fn  A )
19 ffn 5272 . . . 4  |-  ( G : A --> S  ->  G  Fn  A )
203, 19syl 14 . . 3  |-  ( ph  ->  G  Fn  A )
21 caofref.1 . . 3  |-  ( ph  ->  A  e.  V )
22 inidm 3285 . . 3  |-  ( A  i^i  A )  =  A
23 eqidd 2140 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
24 eqidd 2140 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( G `  w ) )
2518, 20, 21, 21, 22, 23, 24ofrfval 5990 . 2  |-  ( ph  ->  ( F  oR R G  <->  A. w  e.  A  ( F `  w ) R ( G `  w ) ) )
2618, 20, 21, 21, 22, 23, 24ofrfval 5990 . 2  |-  ( ph  ->  ( F  oR T G  <->  A. w  e.  A  ( F `  w ) T ( G `  w ) ) )
2716, 25, 263imtr4d 202 1  |-  ( ph  ->  ( F  oR R G  ->  F  oR T G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   class class class wbr 3929    Fn wfn 5118   -->wf 5119   ` cfv 5123    oRcofr 5981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ofr 5983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator