| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caofrss | Unicode version | ||
| Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 |
|
| caofref.2 |
|
| caofcom.3 |
|
| caofrss.4 |
|
| Ref | Expression |
|---|---|
| caofrss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.2 |
. . . . 5
| |
| 2 | 1 | ffvelcdmda 5728 |
. . . 4
|
| 3 | caofcom.3 |
. . . . 5
| |
| 4 | 3 | ffvelcdmda 5728 |
. . . 4
|
| 5 | caofrss.4 |
. . . . . 6
| |
| 6 | 5 | ralrimivva 2589 |
. . . . 5
|
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | breq1 4054 |
. . . . . 6
| |
| 9 | breq1 4054 |
. . . . . 6
| |
| 10 | 8, 9 | imbi12d 234 |
. . . . 5
|
| 11 | breq2 4055 |
. . . . . 6
| |
| 12 | breq2 4055 |
. . . . . 6
| |
| 13 | 11, 12 | imbi12d 234 |
. . . . 5
|
| 14 | 10, 13 | rspc2va 2895 |
. . . 4
|
| 15 | 2, 4, 7, 14 | syl21anc 1249 |
. . 3
|
| 16 | 15 | ralimdva 2574 |
. 2
|
| 17 | ffn 5435 |
. . . 4
| |
| 18 | 1, 17 | syl 14 |
. . 3
|
| 19 | ffn 5435 |
. . . 4
| |
| 20 | 3, 19 | syl 14 |
. . 3
|
| 21 | caofref.1 |
. . 3
| |
| 22 | inidm 3386 |
. . 3
| |
| 23 | eqidd 2207 |
. . 3
| |
| 24 | eqidd 2207 |
. . 3
| |
| 25 | 18, 20, 21, 21, 22, 23, 24 | ofrfval 6180 |
. 2
|
| 26 | 18, 20, 21, 21, 22, 23, 24 | ofrfval 6180 |
. 2
|
| 27 | 16, 25, 26 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ofr 6172 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |