ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofrss Unicode version

Theorem caofrss 6248
Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofcom.3  |-  ( ph  ->  G : A --> S )
caofrss.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y  ->  x T y ) )
Assertion
Ref Expression
caofrss  |-  ( ph  ->  ( F  oR R G  ->  F  oR T G ) )
Distinct variable groups:    x, y, F   
x, G, y    ph, x, y    x, R, y    x, S, y    x, T, y
Allowed substitution hints:    A( x, y)    V( x, y)

Proof of Theorem caofrss
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . 5  |-  ( ph  ->  F : A --> S )
21ffvelcdmda 5769 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
3 caofcom.3 . . . . 5  |-  ( ph  ->  G : A --> S )
43ffvelcdmda 5769 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
5 caofrss.4 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y  ->  x T y ) )
65ralrimivva 2612 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x R y  ->  x T y ) )
76adantr 276 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  A. y  e.  S  ( x R y  ->  x T y ) )
8 breq1 4085 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
x R y  <->  ( F `  w ) R y ) )
9 breq1 4085 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
x T y  <->  ( F `  w ) T y ) )
108, 9imbi12d 234 . . . . 5  |-  ( x  =  ( F `  w )  ->  (
( x R y  ->  x T y )  <->  ( ( F `
 w ) R y  ->  ( F `  w ) T y ) ) )
11 breq2 4086 . . . . . 6  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) R y  <->  ( F `  w ) R ( G `  w ) ) )
12 breq2 4086 . . . . . 6  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) T y  <->  ( F `  w ) T ( G `  w ) ) )
1311, 12imbi12d 234 . . . . 5  |-  ( y  =  ( G `  w )  ->  (
( ( F `  w ) R y  ->  ( F `  w ) T y )  <->  ( ( F `
 w ) R ( G `  w
)  ->  ( F `  w ) T ( G `  w ) ) ) )
1410, 13rspc2va 2921 . . . 4  |-  ( ( ( ( F `  w )  e.  S  /\  ( G `  w
)  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x R y  ->  x T
y ) )  -> 
( ( F `  w ) R ( G `  w )  ->  ( F `  w ) T ( G `  w ) ) )
152, 4, 7, 14syl21anc 1270 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) R ( G `
 w )  -> 
( F `  w
) T ( G `
 w ) ) )
1615ralimdva 2597 . 2  |-  ( ph  ->  ( A. w  e.  A  ( F `  w ) R ( G `  w )  ->  A. w  e.  A  ( F `  w ) T ( G `  w ) ) )
17 ffn 5472 . . . 4  |-  ( F : A --> S  ->  F  Fn  A )
181, 17syl 14 . . 3  |-  ( ph  ->  F  Fn  A )
19 ffn 5472 . . . 4  |-  ( G : A --> S  ->  G  Fn  A )
203, 19syl 14 . . 3  |-  ( ph  ->  G  Fn  A )
21 caofref.1 . . 3  |-  ( ph  ->  A  e.  V )
22 inidm 3413 . . 3  |-  ( A  i^i  A )  =  A
23 eqidd 2230 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
24 eqidd 2230 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( G `  w ) )
2518, 20, 21, 21, 22, 23, 24ofrfval 6225 . 2  |-  ( ph  ->  ( F  oR R G  <->  A. w  e.  A  ( F `  w ) R ( G `  w ) ) )
2618, 20, 21, 21, 22, 23, 24ofrfval 6225 . 2  |-  ( ph  ->  ( F  oR T G  <->  A. w  e.  A  ( F `  w ) T ( G `  w ) ) )
2716, 25, 263imtr4d 203 1  |-  ( ph  ->  ( F  oR R G  ->  F  oR T G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   class class class wbr 4082    Fn wfn 5312   -->wf 5313   ` cfv 5317    oRcofr 6215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ofr 6217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator