ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofrss GIF version

Theorem caofrss 6074
Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofrss.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦𝑥𝑇𝑦))
Assertion
Ref Expression
caofrss (𝜑 → (𝐹𝑟 𝑅𝐺𝐹𝑟 𝑇𝐺))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caofrss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
21ffvelrnda 5620 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
3 caofcom.3 . . . . 5 (𝜑𝐺:𝐴𝑆)
43ffvelrnda 5620 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
5 caofrss.4 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦𝑥𝑇𝑦))
65ralrimivva 2548 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦𝑥𝑇𝑦))
76adantr 274 . . . 4 ((𝜑𝑤𝐴) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦𝑥𝑇𝑦))
8 breq1 3985 . . . . . 6 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦 ↔ (𝐹𝑤)𝑅𝑦))
9 breq1 3985 . . . . . 6 (𝑥 = (𝐹𝑤) → (𝑥𝑇𝑦 ↔ (𝐹𝑤)𝑇𝑦))
108, 9imbi12d 233 . . . . 5 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦𝑥𝑇𝑦) ↔ ((𝐹𝑤)𝑅𝑦 → (𝐹𝑤)𝑇𝑦)))
11 breq2 3986 . . . . . 6 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦 ↔ (𝐹𝑤)𝑅(𝐺𝑤)))
12 breq2 3986 . . . . . 6 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑇𝑦 ↔ (𝐹𝑤)𝑇(𝐺𝑤)))
1311, 12imbi12d 233 . . . . 5 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦 → (𝐹𝑤)𝑇𝑦) ↔ ((𝐹𝑤)𝑅(𝐺𝑤) → (𝐹𝑤)𝑇(𝐺𝑤))))
1410, 13rspc2va 2844 . . . 4 ((((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑅𝑦𝑥𝑇𝑦)) → ((𝐹𝑤)𝑅(𝐺𝑤) → (𝐹𝑤)𝑇(𝐺𝑤)))
152, 4, 7, 14syl21anc 1227 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤) → (𝐹𝑤)𝑇(𝐺𝑤)))
1615ralimdva 2533 . 2 (𝜑 → (∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤) → ∀𝑤𝐴 (𝐹𝑤)𝑇(𝐺𝑤)))
17 ffn 5337 . . . 4 (𝐹:𝐴𝑆𝐹 Fn 𝐴)
181, 17syl 14 . . 3 (𝜑𝐹 Fn 𝐴)
19 ffn 5337 . . . 4 (𝐺:𝐴𝑆𝐺 Fn 𝐴)
203, 19syl 14 . . 3 (𝜑𝐺 Fn 𝐴)
21 caofref.1 . . 3 (𝜑𝐴𝑉)
22 inidm 3331 . . 3 (𝐴𝐴) = 𝐴
23 eqidd 2166 . . 3 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
24 eqidd 2166 . . 3 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝐺𝑤))
2518, 20, 21, 21, 22, 23, 24ofrfval 6058 . 2 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑅(𝐺𝑤)))
2618, 20, 21, 21, 22, 23, 24ofrfval 6058 . 2 (𝜑 → (𝐹𝑟 𝑇𝐺 ↔ ∀𝑤𝐴 (𝐹𝑤)𝑇(𝐺𝑤)))
2716, 25, 263imtr4d 202 1 (𝜑 → (𝐹𝑟 𝑅𝐺𝐹𝑟 𝑇𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444   class class class wbr 3982   Fn wfn 5183  wf 5184  cfv 5188  𝑟 cofr 6049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ofr 6051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator