Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caofrss | GIF version |
Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofcom.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
caofrss.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
Ref | Expression |
---|---|
caofrss | ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 → 𝐹 ∘𝑟 𝑇𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | ffvelrnda 5620 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
3 | caofcom.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
4 | 3 | ffvelrnda 5620 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
5 | caofrss.4 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) | |
6 | 5 | ralrimivva 2548 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
7 | 6 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
8 | breq1 3985 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑦 ↔ (𝐹‘𝑤)𝑅𝑦)) | |
9 | breq1 3985 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑇𝑦 ↔ (𝐹‘𝑤)𝑇𝑦)) | |
10 | 8, 9 | imbi12d 233 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝑦 → 𝑥𝑇𝑦) ↔ ((𝐹‘𝑤)𝑅𝑦 → (𝐹‘𝑤)𝑇𝑦))) |
11 | breq2 3986 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑅𝑦 ↔ (𝐹‘𝑤)𝑅(𝐺‘𝑤))) | |
12 | breq2 3986 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑇𝑦 ↔ (𝐹‘𝑤)𝑇(𝐺‘𝑤))) | |
13 | 11, 12 | imbi12d 233 | . . . . 5 ⊢ (𝑦 = (𝐺‘𝑤) → (((𝐹‘𝑤)𝑅𝑦 → (𝐹‘𝑤)𝑇𝑦) ↔ ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤)))) |
14 | 10, 13 | rspc2va 2844 | . . . 4 ⊢ ((((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
15 | 2, 4, 7, 14 | syl21anc 1227 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
16 | 15 | ralimdva 2533 | . 2 ⊢ (𝜑 → (∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤) → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
17 | ffn 5337 | . . . 4 ⊢ (𝐹:𝐴⟶𝑆 → 𝐹 Fn 𝐴) | |
18 | 1, 17 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
19 | ffn 5337 | . . . 4 ⊢ (𝐺:𝐴⟶𝑆 → 𝐺 Fn 𝐴) | |
20 | 3, 19 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) |
21 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
22 | inidm 3331 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
23 | eqidd 2166 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
24 | eqidd 2166 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = (𝐺‘𝑤)) | |
25 | 18, 20, 21, 21, 22, 23, 24 | ofrfval 6058 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤))) |
26 | 18, 20, 21, 21, 22, 23, 24 | ofrfval 6058 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑟 𝑇𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
27 | 16, 25, 26 | 3imtr4d 202 | 1 ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 → 𝐹 ∘𝑟 𝑇𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∀wral 2444 class class class wbr 3982 Fn wfn 5183 ⟶wf 5184 ‘cfv 5188 ∘𝑟 cofr 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ofr 6051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |