| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caofrss | GIF version | ||
| Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| caofcom.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
| caofrss.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
| Ref | Expression |
|---|---|
| caofrss | ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 → 𝐹 ∘𝑟 𝑇𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffvelcdmda 5700 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
| 3 | caofcom.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
| 4 | 3 | ffvelcdmda 5700 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
| 5 | caofrss.4 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) | |
| 6 | 5 | ralrimivva 2579 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
| 7 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) |
| 8 | breq1 4037 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑦 ↔ (𝐹‘𝑤)𝑅𝑦)) | |
| 9 | breq1 4037 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑇𝑦 ↔ (𝐹‘𝑤)𝑇𝑦)) | |
| 10 | 8, 9 | imbi12d 234 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝑦 → 𝑥𝑇𝑦) ↔ ((𝐹‘𝑤)𝑅𝑦 → (𝐹‘𝑤)𝑇𝑦))) |
| 11 | breq2 4038 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑅𝑦 ↔ (𝐹‘𝑤)𝑅(𝐺‘𝑤))) | |
| 12 | breq2 4038 | . . . . . 6 ⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑇𝑦 ↔ (𝐹‘𝑤)𝑇(𝐺‘𝑤))) | |
| 13 | 11, 12 | imbi12d 234 | . . . . 5 ⊢ (𝑦 = (𝐺‘𝑤) → (((𝐹‘𝑤)𝑅𝑦 → (𝐹‘𝑤)𝑇𝑦) ↔ ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤)))) |
| 14 | 10, 13 | rspc2va 2882 | . . . 4 ⊢ ((((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝑅𝑦 → 𝑥𝑇𝑦)) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
| 15 | 2, 4, 7, 14 | syl21anc 1248 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤) → (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
| 16 | 15 | ralimdva 2564 | . 2 ⊢ (𝜑 → (∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤) → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
| 17 | ffn 5410 | . . . 4 ⊢ (𝐹:𝐴⟶𝑆 → 𝐹 Fn 𝐴) | |
| 18 | 1, 17 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 19 | ffn 5410 | . . . 4 ⊢ (𝐺:𝐴⟶𝑆 → 𝐺 Fn 𝐴) | |
| 20 | 3, 19 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| 21 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 22 | inidm 3373 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 23 | eqidd 2197 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
| 24 | eqidd 2197 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = (𝐺‘𝑤)) | |
| 25 | 18, 20, 21, 21, 22, 23, 24 | ofrfval 6148 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤))) |
| 26 | 18, 20, 21, 21, 22, 23, 24 | ofrfval 6148 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑟 𝑇𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑇(𝐺‘𝑤))) |
| 27 | 16, 25, 26 | 3imtr4d 203 | 1 ⊢ (𝜑 → (𝐹 ∘𝑟 𝑅𝐺 → 𝐹 ∘𝑟 𝑇𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 class class class wbr 4034 Fn wfn 5254 ⟶wf 5255 ‘cfv 5259 ∘𝑟 cofr 6138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ofr 6140 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |