ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrfval2 Unicode version

Theorem ofrfval2 6006
Description: The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval2.1  |-  ( ph  ->  A  e.  V )
offval2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
offval2.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
offval2.4  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
offval2.5  |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )
Assertion
Ref Expression
ofrfval2  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  A  B R C ) )
Distinct variable groups:    x, A    ph, x    x, R
Allowed substitution hints:    B( x)    C( x)    F( x)    G( x)    V( x)    W( x)    X( x)

Proof of Theorem ofrfval2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 offval2.2 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
21ralrimiva 2508 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  W )
3 eqid 2140 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43fnmpt 5257 . . . . 5  |-  ( A. x  e.  A  B  e.  W  ->  ( x  e.  A  |->  B )  Fn  A )
52, 4syl 14 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  Fn  A
)
6 offval2.4 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
76fneq1d 5221 . . . 4  |-  ( ph  ->  ( F  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
85, 7mpbird 166 . . 3  |-  ( ph  ->  F  Fn  A )
9 offval2.3 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
109ralrimiva 2508 . . . . 5  |-  ( ph  ->  A. x  e.  A  C  e.  X )
11 eqid 2140 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1211fnmpt 5257 . . . . 5  |-  ( A. x  e.  A  C  e.  X  ->  ( x  e.  A  |->  C )  Fn  A )
1310, 12syl 14 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  Fn  A
)
14 offval2.5 . . . . 5  |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )
1514fneq1d 5221 . . . 4  |-  ( ph  ->  ( G  Fn  A  <->  ( x  e.  A  |->  C )  Fn  A ) )
1613, 15mpbird 166 . . 3  |-  ( ph  ->  G  Fn  A )
17 offval2.1 . . 3  |-  ( ph  ->  A  e.  V )
18 inidm 3290 . . 3  |-  ( A  i^i  A )  =  A
196adantr 274 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  F  =  ( x  e.  A  |->  B ) )
2019fveq1d 5431 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( ( x  e.  A  |->  B ) `
 y ) )
2114adantr 274 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  G  =  ( x  e.  A  |->  C ) )
2221fveq1d 5431 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( G `  y )  =  ( ( x  e.  A  |->  C ) `
 y ) )
238, 16, 17, 17, 18, 20, 22ofrfval 5998 . 2  |-  ( ph  ->  ( F  oR R G  <->  A. y  e.  A  ( (
x  e.  A  |->  B ) `  y ) R ( ( x  e.  A  |->  C ) `
 y ) ) )
24 nffvmpt1 5440 . . . . 5  |-  F/_ x
( ( x  e.  A  |->  B ) `  y )
25 nfcv 2282 . . . . 5  |-  F/_ x R
26 nffvmpt1 5440 . . . . 5  |-  F/_ x
( ( x  e.  A  |->  C ) `  y )
2724, 25, 26nfbr 3982 . . . 4  |-  F/ x
( ( x  e.  A  |->  B ) `  y ) R ( ( x  e.  A  |->  C ) `  y
)
28 nfv 1509 . . . 4  |-  F/ y ( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
)
29 fveq2 5429 . . . . 5  |-  ( y  =  x  ->  (
( x  e.  A  |->  B ) `  y
)  =  ( ( x  e.  A  |->  B ) `  x ) )
30 fveq2 5429 . . . . 5  |-  ( y  =  x  ->  (
( x  e.  A  |->  C ) `  y
)  =  ( ( x  e.  A  |->  C ) `  x ) )
3129, 30breq12d 3950 . . . 4  |-  ( y  =  x  ->  (
( ( x  e.  A  |->  B ) `  y ) R ( ( x  e.  A  |->  C ) `  y
)  <->  ( ( x  e.  A  |->  B ) `
 x ) R ( ( x  e.  A  |->  C ) `  x ) ) )
3227, 28, 31cbvral 2653 . . 3  |-  ( A. y  e.  A  (
( x  e.  A  |->  B ) `  y
) R ( ( x  e.  A  |->  C ) `  y )  <->  A. x  e.  A  ( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
) )
33 simpr 109 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
343fvmpt2 5512 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  W )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
3533, 1, 34syl2anc 409 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
3611fvmpt2 5512 . . . . . 6  |-  ( ( x  e.  A  /\  C  e.  X )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
3733, 9, 36syl2anc 409 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  C ) `  x
)  =  C )
3835, 37breq12d 3950 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
)  <->  B R C ) )
3938ralbidva 2434 . . 3  |-  ( ph  ->  ( A. x  e.  A  ( ( x  e.  A  |->  B ) `
 x ) R ( ( x  e.  A  |->  C ) `  x )  <->  A. x  e.  A  B R C ) )
4032, 39syl5bb 191 . 2  |-  ( ph  ->  ( A. y  e.  A  ( ( x  e.  A  |->  B ) `
 y ) R ( ( x  e.  A  |->  C ) `  y )  <->  A. x  e.  A  B R C ) )
4123, 40bitrd 187 1  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  A  B R C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   class class class wbr 3937    |-> cmpt 3997    Fn wfn 5126   ` cfv 5131    oRcofr 5989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ofr 5991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator