Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofrfval2 | Unicode version |
Description: The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
offval2.1 | |
offval2.2 | |
offval2.3 | |
offval2.4 | |
offval2.5 |
Ref | Expression |
---|---|
ofrfval2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval2.2 | . . . . . 6 | |
2 | 1 | ralrimiva 2539 | . . . . 5 |
3 | eqid 2165 | . . . . . 6 | |
4 | 3 | fnmpt 5314 | . . . . 5 |
5 | 2, 4 | syl 14 | . . . 4 |
6 | offval2.4 | . . . . 5 | |
7 | 6 | fneq1d 5278 | . . . 4 |
8 | 5, 7 | mpbird 166 | . . 3 |
9 | offval2.3 | . . . . . 6 | |
10 | 9 | ralrimiva 2539 | . . . . 5 |
11 | eqid 2165 | . . . . . 6 | |
12 | 11 | fnmpt 5314 | . . . . 5 |
13 | 10, 12 | syl 14 | . . . 4 |
14 | offval2.5 | . . . . 5 | |
15 | 14 | fneq1d 5278 | . . . 4 |
16 | 13, 15 | mpbird 166 | . . 3 |
17 | offval2.1 | . . 3 | |
18 | inidm 3331 | . . 3 | |
19 | 6 | adantr 274 | . . . 4 |
20 | 19 | fveq1d 5488 | . . 3 |
21 | 14 | adantr 274 | . . . 4 |
22 | 21 | fveq1d 5488 | . . 3 |
23 | 8, 16, 17, 17, 18, 20, 22 | ofrfval 6058 | . 2 |
24 | nffvmpt1 5497 | . . . . 5 | |
25 | nfcv 2308 | . . . . 5 | |
26 | nffvmpt1 5497 | . . . . 5 | |
27 | 24, 25, 26 | nfbr 4028 | . . . 4 |
28 | nfv 1516 | . . . 4 | |
29 | fveq2 5486 | . . . . 5 | |
30 | fveq2 5486 | . . . . 5 | |
31 | 29, 30 | breq12d 3995 | . . . 4 |
32 | 27, 28, 31 | cbvral 2688 | . . 3 |
33 | simpr 109 | . . . . . 6 | |
34 | 3 | fvmpt2 5569 | . . . . . 6 |
35 | 33, 1, 34 | syl2anc 409 | . . . . 5 |
36 | 11 | fvmpt2 5569 | . . . . . 6 |
37 | 33, 9, 36 | syl2anc 409 | . . . . 5 |
38 | 35, 37 | breq12d 3995 | . . . 4 |
39 | 38 | ralbidva 2462 | . . 3 |
40 | 32, 39 | syl5bb 191 | . 2 |
41 | 23, 40 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 class class class wbr 3982 cmpt 4043 wfn 5183 cfv 5188 cofr 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ofr 6051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |