ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncff Unicode version

Theorem cncff 14732
Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncff  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )

Proof of Theorem cncff
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfrss 14730 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
2 cncfrss2 14731 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
3 elcncf 14728 . . . 4  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
41, 2, 3syl2anc 411 . . 3  |-  ( F  e.  ( A -cn-> B )  ->  ( F  e.  ( A -cn-> B )  <-> 
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
54ibi 176 . 2  |-  ( F  e.  ( A -cn-> B )  ->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
65simpld 112 1  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   A.wral 2472   E.wrex 2473    C_ wss 3153   class class class wbr 4029   -->wf 5250   ` cfv 5254  (class class class)co 5918   CCcc 7870    < clt 8054    - cmin 8190   RR+crp 9719   abscabs 11141   -cn->ccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-cncf 14726
This theorem is referenced by:  cncfss  14738  climcncf  14739  cncfco  14746  cncfmpt1f  14752  negfcncf  14760  mulcncflem  14761  mulcncf  14762  divcncfap  14768  maxcncf  14769  mincncf  14770  ivthdec  14798  ivthreinc  14799  cnmptlimc  14828  dvrecap  14862  sincn  14904  coscn  14905
  Copyright terms: Public domain W3C validator