| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncff | Unicode version | ||
| Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncff |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfrss 15122 |
. . . 4
| |
| 2 | cncfrss2 15123 |
. . . 4
| |
| 3 | elcncf 15120 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . 3
|
| 5 | 4 | ibi 176 |
. 2
|
| 6 | 5 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-map 6750 df-cncf 15118 |
| This theorem is referenced by: cncfss 15130 climcncf 15131 cncfco 15138 cncfmpt1f 15145 negfcncf 15153 mulcncflem 15154 mulcncf 15155 divcncfap 15161 maxcncf 15162 mincncf 15163 ivthdec 15191 ivthreinc 15192 cnmptlimc 15221 dvrecap 15260 sincn 15316 coscn 15317 |
| Copyright terms: Public domain | W3C validator |