ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncff Unicode version

Theorem cncff 15124
Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncff  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )

Proof of Theorem cncff
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfrss 15122 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
2 cncfrss2 15123 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
3 elcncf 15120 . . . 4  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
41, 2, 3syl2anc 411 . . 3  |-  ( F  e.  ( A -cn-> B )  ->  ( F  e.  ( A -cn-> B )  <-> 
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
54ibi 176 . 2  |-  ( F  e.  ( A -cn-> B )  ->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
65simpld 112 1  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2177   A.wral 2485   E.wrex 2486    C_ wss 3170   class class class wbr 4051   -->wf 5276   ` cfv 5280  (class class class)co 5957   CCcc 7943    < clt 8127    - cmin 8263   RR+crp 9795   abscabs 11383   -cn->ccncf 15117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-map 6750  df-cncf 15118
This theorem is referenced by:  cncfss  15130  climcncf  15131  cncfco  15138  cncfmpt1f  15145  negfcncf  15153  mulcncflem  15154  mulcncf  15155  divcncfap  15161  maxcncf  15162  mincncf  15163  ivthdec  15191  ivthreinc  15192  cnmptlimc  15221  dvrecap  15260  sincn  15316  coscn  15317
  Copyright terms: Public domain W3C validator