| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cncff | Unicode version | ||
| Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) | 
| Ref | Expression | 
|---|---|
| cncff | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cncfrss 14811 | 
. . . 4
 | |
| 2 | cncfrss2 14812 | 
. . . 4
 | |
| 3 | elcncf 14809 | 
. . . 4
 | |
| 4 | 1, 2, 3 | syl2anc 411 | 
. . 3
 | 
| 5 | 4 | ibi 176 | 
. 2
 | 
| 6 | 5 | simpld 112 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-map 6709 df-cncf 14807 | 
| This theorem is referenced by: cncfss 14819 climcncf 14820 cncfco 14827 cncfmpt1f 14834 negfcncf 14842 mulcncflem 14843 mulcncf 14844 divcncfap 14850 maxcncf 14851 mincncf 14852 ivthdec 14880 ivthreinc 14881 cnmptlimc 14910 dvrecap 14949 sincn 15005 coscn 15006 | 
| Copyright terms: Public domain | W3C validator |